Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Overview

Deep Unsupervised Image Hashing by Maximizing Bit Entropy

This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Proposed Bi-half layer

A simple, parameter-free, bi-half coding layer to maximize hash channel capacity

Datasets and Architectures on different settings

Experiments on 5 image datasets: Flickr25k, Nus-wide, Cifar-10, Mscoco, Mnist, and 2 video datasets: Ucf-101 and Hmdb-51. According to different settings, we divided them into: i) Train an AutoEncoder on Mnist; ii) Image Hashing on Flickr25k, Nus-wide, Cifar-10, Mscoco using Pre-trained Vgg; iii) Video Hashing on Ucf-101 and Hmdb-51 using Pre-trained 3D models.

Glance

3 settings ── AutoEncoder ── ── ── ── ImageHashing ── ── ── ── VideoHashing      
               ├── Sign.py             ├── Cifar10_I.py          └── main.py
               ├── SignReg.py          ├── Cifar10_II.py
               └── BiHalf.py           ├── Flickr25k.py
    	     			       └── Mscoco.py

Datasets download

# Datasets Download
1 Flick25k Link
2 Mscoco Link
3 Nuswide Link
4 Cifar10 Link
5 Mnist Link
6 Ucf101 Link
7 Hmdb51 Link

For video datasets, we converted them from avi to jpg files. The original avi videos can be download: Ucf101 and Hmdb51.

Implementation Details for Video Setup

For the video datasets ucf101 and hmdb51, to generate a training sample, we first select a video frame by uniform sampling, and then generate a 16-frame clip around the frame. If the selected position has less than 16 frames before the video ends, then we repeat the procedure until it fits. We spatially resize the cropped sample to 112 x 112 pixels, resulting in one training sample with size of 3 channels x 16 frames x 112 pixels x 112 pixels. In the retrieval, we adopt sliding window to generate clips as input, i.e, each video is split into non-overlapping 16-frame clips. Each video has an average 92 non-overlapped clips. Take the ucf101 for example, we obtain a query set of 3,783 videos containing 348,047 non-overlapped clips, and the retrieval set of 9,537 videos containing 891,961 clips. We then input the non-overlapped clips to extract binary descriptors for hashing. For more details, please see the paper.

Pretrained model

You can download kinetics pre-trained 3D models: ResNet-34 and ResNet-101 here.


3D Visualization

The continuous feature visualization on an AutoEncoder using Mnist. We compare 3 different models: sign layer, sign+reg and our bi-half layer.

Sign Layer Sign + Reg Bi-half Layer

Citation

If you find the code in this repository useful for your research consider citing it.

@article{liAAAI2021,
  title={Deep Unsupervised Image Hashing by Maximizing Bit Entropy},
  author={Li, Yunqiang and van Gemert, Jan},
  journal={AAAI},
  year={2021}
}

Contact

If you have any problem about our code, feel free to contact

Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

Xingyu Lin 93 Jan 05, 2023
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
A pytorch implementation of faster RCNN detection framework (Use detectron2, it's a masterpiece)

Notice(2019.11.2) This repo was built back two years ago when there were no pytorch detection implementation that can achieve reasonable performance.

Ruotian(RT) Luo 1.8k Jan 01, 2023
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

(Bill) Yuchen Lin 31 Oct 19, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

Ronnie_IIAU 149 Dec 22, 2022