Learning to compose soft prompts for compositional zero-shot learning.

Overview

Compositional Soft Prompting (CSP)

Compositional soft prompting (CSP), a parameter-efficient learning technique to improve the zero-shot compositionality of large-scale pretrained vision-language models (VLMs) without the overhead of fine-tuning the entire model.

Reference Paper: Learning to Compose Soft Prompts for Compositional Zero-Shot Learning

alt text

If you find CSP helpful, please cite our paper:

@article{csp2022,
  author = {Nayak, Nihal V. and Yu, Peilin and Bach, Stephen H.},
  title = {Learning to Compose Soft Prompts for Compositional Zero-Shot Learning},
  volume = {arXiv:2204.03574 [cs.LG]},
  year = {2022},
}

Setup

conda create --name clip python=3.7
conda activate clip
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
pip3 install ftfy regex tqdm scipy pandas
pip3 install git+https://github.com/openai/CLIP.git

Alternatively, you can use pip install -r requirements.txt to install all the dependencies.

Download Dataset

We experiment with three datasets: MIT-States, UT-Zappos, and C-GQA.

sh download_data.sh

If you already have setup the datasets, you can use symlink and ensure the following paths exist: data/<dataset> where <datasets> = {'mit-states', 'ut-zappos', 'cgqa'}.

Training

python -u train.py \
  --dataset mit-states \
  --model ViT-L/14 \
  --experiment_name csp \
  --seed 0 \
  --epochs 20 \
  --lr 5e-05 \
  --attr_dropout 0.3 \
  --weight_decay 0.00001 \
  --train_batch_size 64 \
  --gradient_accumulation_steps 2 \
  --context_length 8 \
  --save_path data/model/mit-states/sample_model \
  --save_every_n 1

You can replace --dataset with {mit-states, ut-zappos, cgqa}. The best hyperparameters are included in the paper.

Evaluation

We evaluate our models in two settings: closed-world and open-world.

Closed-World Evaluation

python -u evaluate.py \
  --dataset mit-states \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_20.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 16 \
  --experiment_name csp

Open-World Evaluation

For our open-world evaluation, we compute the feasbility calibration and then evaluate on the dataset.

Feasibility Calibration

We use GloVe embeddings to compute the similarities between objects and attributes. Download the GloVe embeddings in the data directory:

cd data
wget https://nlp.stanford.edu/data/glove.6B.zip

Move glove.6B.300d.txt into data/glove.6B.300d.txt.

To compute feasibility calibration for each dataset, run the following command:

python -u datasets/feasibility.py --dataset mit-states

The feasibility similarities are saved at data/feasibility_<dataset>.pt.

Evaluation

The open-world evaluation with the thresholds (feasibility calibration).

python -u evaluate.py \
  --dataset mit-states \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_5.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 256 \
  --experiment_name czsl \
  --threshold <threshold> \
  --open_world

If <threshold> is None, then the model picks the best threshold on the validation set. We use the following thresholds:

Dataset Threshold
mit-states 0.4069159426
ut-zappos 0.5299109123
cgqa 0.49937106273612186

Note: We use 256GB of cpu memory to evaluate cgqa.

Generalization to Higher-Order Compositions

Evaluate the trained CSP vocabulary on the new AAO-MIT-States dataset.

python aao/evaluate_att_att_obj.py \
  --experiment_name csp \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_20.pt

We thank Andrew Delworth and Elise Carman for helping us annotate this dataset.

Generalization to Mixed Pretrained and Fine-Tuned Vocabulary

Ablation experiment to train and evaluate CSP with reduced fine-tuned vocabulary. We run experiment on the ut-zappos dataset.

Training

python -u mix/mix_train.py \
  --dataset ut-zappos \
  --model ViT-L/14 \
  --experiment_name mix_csp \
  --seed 0 \
  --epochs 20 \
  --lr 5e-04 \
  --attr_dropout 0.2 \
  --weight_decay 0.00001 \
  --train_batch_size 64 \
  --context_length 8 \
  --save_path data/model/ut-zappos/mix_train_model_0.25 \
  --save_every_n 5 \
  --attr_keep_ratio 0.25 \
  --gradient_accumulation_steps 2

We change the --attr_keep_ratio to {0.25, 0.50, 0.75}.

Evaluation

python -u mix/evaluate_mix_train.py \
  --dataset ut-zappos \
  --soft_embeddings data/model/ut-zappos/mix_train_model_0.25/soft_embeddings.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 256 \
  --experiment_name csp

Credits

The project uses openly available model, code, and datasets. Please see the credits.

Owner
Bats Research
Bats Research
This repo created for bypassing Widevine L3 DRM and obtaining keys.

First run: Copy headers (with cookies) of POST license request from browser to headers.py like dictionary. pip install -r requirements.txt # if doesn'

Mikhail 263 Jan 07, 2023
IDA loader for Apple's iBoot, SecureROM and AVPBooter

IDA iBoot Loader IDA loader for Apple's iBoot, SecureROM and AVPBooter Installation Copy iboot-loader.py to the loaders folder in IDA directory. Credi

matteyeux 74 Dec 23, 2022
Safety checks your installed dependencies for known security vulnerabilities

Safety checks your installed dependencies for known security vulnerabilities. By default it uses the open Python vulnerability database Safety DB, but

pyup.io 1.4k Dec 30, 2022
A Python replicated exploit for Webmin 1.580 /file/show.cgi Remote Code Execution

CVE-2012-2982 John Hammond | September 4th, 2021 Checking searchsploit for Webmin 1.580 I only saw a Metasploit module for the /file/show.cgi Remote C

John Hammond 25 Dec 08, 2022
Script checks provided domains for log4j vulnerability

log4j Script checks provided domains for log4j vulnerability. A token is created with canarytokens.org and passed as header at request for a single do

Matthias Nehls 2 Dec 12, 2021
Something I built to test for Log4J vulnerabilities on customer networks.

Log4J-Scanner Something I built to test for Log4J vulnerabilities on customer networks. I'm not responsible if your computer blows up, catches fire or

1 Dec 20, 2021
This repo contain builders of cab file, html file, and docx file for CVE-2021-40444 exploit

CVE-2021-40444 builders This repo contain builders of cab file, html file, and docx file for CVE-2021-40444 exploit. This repo is just for testing, re

ASL IT Security 168 Nov 09, 2022
A tool that detects the expensive Carbon Black watchlists.

A tool that detects the "expensive" Carbon Black watchlists.

Oğuzcan Pamuk 8 Aug 04, 2022
APKLeaks - Scanning APK file for URIs, endpoints & secrets.

APKLeaks - Scanning APK file for URIs, endpoints & secrets.

dw1 3.5k Jan 09, 2023
🔐 A simple command-line password manager.

PassVault What Is It? It is a command-line password manager, for educational purposes, that stores localy, in AES encryption, your sensitives datas in

5 Aug 15, 2022
Security-TXT is a python package for retrieving, parsing and manipulating security.txt files.

Security-TXT is a python package for retrieving, parsing and manipulating security.txt files.

Frank 3 Feb 07, 2022
Trainspotting - Python Dependency Injector based on interface binding

Choose dependency injection Friendly with MyPy Supports lazy injections Supports

avito.tech 3 Jan 26, 2022
A python implementation of the windows 95 product key check.

Windows 95 Product Key Check Info: This is a python implementation of the windows 95 product key check. This was just a bit of fun and a massive 5 hou

11 Aug 07, 2022
Osint-Tool - Information collection tool in python

Osint-Tool Herramienta para la recolección de información Pronto más opciones In

3 Apr 09, 2022
一款辅助探测Orderby注入漏洞的BurpSuite插件,Python3编写,适用于上xray等扫描器被ban的场景

OrderbyHunter 一款辅助探测Orderby注入漏洞的BurpSuite插件,Python3编写,适用于上xray等扫描器被ban的场景 1. 支持Get/Post型请求参数的探测,被动探测,对于存在Orderby注入的请求将会在HTTP Histroy里标红 2. 自定义排序参数list

Automne 21 Aug 12, 2022
Course: Information Security with Python

Curso: Segurança da Informação com Python Curso realizado atravès da Plataforma da Digital Innovation One Prof: Bruno Dias Conteúdo: Introdução aos co

Elizeu Barbosa Abreu 1 Nov 28, 2021
Collection Of Discord Hacking Tools / Fun Stuff / Exploits That Is Completely Made Using Python.

Venom Collection Of Discord Hacking Tools / Fun Stuff / Exploits That Is Completely Made Using Python. Report Bug · Request Feature Contributing Well,

PndaBoi 25 Dec 06, 2022
CloudFlare reconnaissance, tries to uncover the IP behind CF.

CloudFlare reconnaissance, tries to uncover the IP behind CF.

Neospace 8 Dec 03, 2021
Visius Heimdall is a tool that checks for risks on your cloud infrastructure

Heimdall Cloud Checker 🇧🇷 About Visius is a Brazilian cybersecurity startup that follows the signs of the crimson thunder ;) 🎸 ! As we value open s

visius 48 Jun 20, 2022