Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

Overview

Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

The script can be used for any channel or video for scraping, in addition will provide you with the option to get any automatic captions. Automatic captions are available in Dutch, English, French, German, Indonesian, Italian, Japanese, Korean, Portuguese, Russian, Spanish, Turkish, Vietnamese and more or any, so use it as you wish.

usage:

pip install youtube_transcript_api scrapetube codext

for default channel

python tube.py 

Custom channel

python tube.py UCSs5vZi0U7qHLkUjF3QnaWg

Get all videos for a channel

import scrapetube

videos = scrapetube.get_channel("UCCezIgC97PvUuR4_gbFUs5g")

for video in videos:
    print(video['videoId'])

Filter for manually created transcripts

transcript = transcript_list.find_manually_created_transcript(['de', 'en'])

or automatically generated ones

transcript = transcript_list.find_generated_transcript(['de', 'en'])

The methods find_generated_transcript, find_manually_created_transcript, find_generated_transcript return Transcript objects. They contain metadata regarding the transcript:

print(
    transcript.video_id,
    transcript.language,
    transcript.language_code,
    # whether it has been manually created or generated by YouTube
    transcript.is_generated,
    # whether this transcript can be translated or not
    transcript.is_translatable,
    # a list of languages the transcript can be translated to
    transcript.translation_languages,
)

Codext, contraction of "codecs" and "extension", is a tiny library that gathers a few additional encodings for use with codecs. While imported, it registers new encodings to a proxy codecs registry for making the encodings available from the codecs.(decode|encode|open) calls.

Currently set on Braille codext.encode("Little Endian", "braille") accept even morse

Codecs categories

  • native: the built-in codecs from the original codecs package
  • non-native: this special category regroups all the categories mentioned hereafter
  • base: baseX codecs (e.g. base, base100)
  • binary: codecs working on strings but applying their algorithms on their binary forms (e.g. baudot, manchester)
  • common: common codecs not included in the native ones or simly added for the purpose of standardization (e.g. octal, ordinal)
  • crypto: codecs related to cryptography algorithms (e.g. barbie, rot, xor)
  • language: language-related codecs (e.g. morse, navajo)
  • other: uncategorized codecs (e.g. letters, url)
  • stegano: steganography-related codecs (e.g. sms, resistor)
  • Except the native and non-native categories, the other ones are simply the name of the subdirectories (with "s" right-stripped) of the codext package.
codext.list("binary")
['baudot', 'baudot-spaced', 'baudot-tape', 'bcd', 'bcd-extended0', 'bcd-extended1', 'excess3', 'gray', 'manchester', 'manchester-inverted']
codext.list("language")
['braille', 'leet', 'morse', 'navajo', 'radio', 'southpark', 'southpark-icase', 'tom-tom']
codext.list("native")
['ascii', 'base64_codec', 'big5', 'big5hkscs', 'bz2_codec', 'cp037', 'cp273', 'cp424', 'cp437', 'cp500', 'cp775', 'cp850', 'cp852', 'cp855', 'cp857', 'cp858', 'cp860', 'cp861', 'cp862', 'cp863', ...]

Current channels for scrapping the transcript subtitles in English language and translate them to Braille language

Up to you list, just replace the Youtube channel ID string at 🤯

videoListName = scrapetube.get_channel("UClnw_bcNg4CAzF772qEtq4g")

YouTube uses automatic speech recognition to add automatic captions to videos. The feature is available in English, Dutch, French, German, Italian, Japanese, Korean, Portuguese, Russian, and Spanish. ASR is not available for all videos.

You can eding the language at 😇

transcript = transcript_list.find_generated_transcript(['en']).fetch()

Example output:

https://www.youtube.com/watch?v=ouMK-Q9S7cc
Web3 Foundation - The Next Evolution of the Internet - Dr. Gavin Wood
⠺⠑⠃⠒⠀⠋⠕⠥⠝⠙⠁⠞⠊⠕⠝⠀⠤⠀⠞⠓⠑⠀⠝⠑⠭⠞⠀⠑⠧⠕⠇⠥⠞⠊⠕⠝⠀⠕⠋⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠤⠀⠙⠗⠨⠀⠛⠁⠧⠊⠝⠀⠺⠕⠕⠙
⠊⠀⠞⠓⠊⠝⠅⠀⠞⠓⠑⠗⠑⠀⠺⠑⠗⠑⠀⠁⠀⠇⠕⠞⠀⠕⠋⠀⠏⠑⠕⠏⠇⠑⠀⠞⠓⠁⠞⠀⠗⠑⠁⠇⠇⠽⠀⠃⠑⠇⠊⠑⠧⠑⠙⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠺⠁⠎⠀⠺⠁⠎⠀⠛⠕⠝⠝⠁⠀⠃⠑⠀⠁⠀⠞⠗⠁⠝⠎⠋⠕⠗⠍⠁⠞⠊⠧⠑⠀⠞⠑⠉⠓⠝⠕⠇⠕⠛⠽⠀⠋⠕⠗⠀⠎⠕⠉⠊⠑⠞⠽⠀⠁⠝⠙⠀⠊⠀⠞⠓⠊⠝⠅⠀⠺⠓⠁⠞⠀⠓⠁⠏⠏⠑⠝⠑⠙⠀⠺⠁⠎⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠺⠁⠎⠀⠙⠑⠎⠊⠛⠝⠑⠙⠀⠊⠝⠀⠎⠥⠉⠓⠀⠁⠀⠺⠁⠽⠀⠞⠓⠁⠞⠀⠊⠞⠀⠁⠇⠇⠕⠺⠑⠙⠀⠊⠞⠀⠺⠁⠎⠀⠋⠇⠑⠭⠊⠃⠇⠑⠀⠊⠞⠀⠁⠇⠇⠕⠺⠑⠙⠀⠑⠭⠊⠎⠞⠊⠝⠛⠀⠎⠞⠗⠥⠉⠞⠥⠗⠑⠎⠀⠕⠋⠀⠎⠕⠉⠊⠑⠞⠽⠀⠑⠭⠊⠎⠞⠊⠝⠛⠀⠺⠁⠽⠎⠀⠕⠋⠀⠙⠕⠊⠝⠛⠀⠃⠥⠎⠊⠝⠑⠎⠎⠀⠞⠕⠀⠎⠊⠍⠏⠇⠽⠀⠍⠕⠧⠑⠀⠕⠧⠑⠗⠀⠕⠝⠞⠕⠀⠞⠓⠑⠀⠙⠊⠛⠊⠞⠁⠇⠀⠙⠕⠍⠁⠊⠝⠀⠎⠕⠀⠺⠓⠑⠝⠀⠺⠑⠀⠙⠕⠀⠃⠁⠝⠅⠊⠝⠛⠀⠕⠝⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠺⠑⠀⠎⠞⠊⠇⠇⠀⠥⠎⠑⠀⠁⠀⠃⠁⠝⠅⠀⠺⠑⠀⠎⠞⠊⠇⠇⠀⠥⠎⠑⠀⠕⠥⠗⠀⠑⠭⠊⠎⠞⠊⠝⠛⠀⠃⠗⠊⠉⠅⠤⠁⠝⠙⠤⠍⠕⠗⠞⠁⠗⠀⠞⠗⠁⠙⠊⠞⠊⠕⠝⠁⠇⠀⠲⠴⠴⠀⠽⠑⠁⠗⠀⠕⠇⠙⠀⠃⠁⠝⠅⠊⠝⠛⠀⠕⠗⠛⠁⠝⠊⠵⠁⠞⠊⠕⠝⠀⠊⠞⠄⠎⠀⠚⠥⠎⠞⠀⠞⠓⠁⠞⠀⠺⠑⠀⠁⠉⠉⠑⠎⠎⠀⠞⠓⠑⠍⠀⠞⠓⠗⠕⠥⠛⠓⠀⠁⠀⠺⠑⠃⠀⠏⠁⠛⠑⠀⠊⠞⠀⠓⠁⠎⠝⠄⠞⠀⠗⠑⠁⠇⠇⠽⠀⠁⠇⠞⠑⠗⠑⠙⠀⠎⠕⠉⠊⠑⠞⠽⠀⠊⠞⠀⠗⠑⠁⠇⠇⠽⠀⠺⠁⠎⠝⠄⠞⠀⠞⠗⠁⠝⠎⠋⠕⠗⠍⠁⠞⠊⠧⠑⠀⠁⠝⠙⠀⠊⠀⠞⠓⠊⠝⠅⠀⠞⠓⠁⠞⠄⠎⠀⠞⠓⠁⠞⠄⠎⠀⠑⠧⠑⠗⠍⠕⠗⠑⠀⠉⠇⠑⠁⠗⠀⠺⠓⠑⠝⠀⠺⠑⠀⠺⠓⠑⠝⠀⠺⠑⠀⠞⠓⠊⠝⠅⠀⠁⠃⠕⠥⠞⠀⠋⠁⠉⠑⠃⠕⠕⠅⠀⠁⠝⠙⠀⠺⠑⠀⠞⠓⠊⠝⠅⠀⠁⠃⠕⠥⠞⠀⠛⠕⠕⠛⠇⠑⠀⠞⠓⠑⠎⠑⠀⠁⠗⠑⠀⠝⠕⠞⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠺⠕⠗⠅⠊⠝⠛⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠏⠑⠕⠏⠇⠑⠀⠺⠕⠗⠅⠊⠝⠛⠀⠞⠕⠛⠑⠞⠓⠑⠗⠀⠊⠝⠀⠗⠑⠁⠇⠊⠞⠽⠀⠞⠓⠑⠽⠄⠗⠑⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠅⠊⠝⠙⠎⠀⠕⠋⠀⠎⠞⠗⠥⠉⠞⠥⠗⠑⠎⠀⠞⠓⠁⠞⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠓⠊⠑⠗⠁⠗⠉⠓⠊⠉⠁⠇⠀⠕⠗⠛⠁⠝⠊⠵⠁⠞⠊⠕⠝⠎⠀⠞⠓⠁⠞⠀⠓⠁⠧⠑⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠉⠑⠝⠞⠗⠁⠇⠊⠵⠑⠙⠀⠃⠁⠝⠅⠀⠁⠉⠉⠕⠥⠝⠞⠎⠀⠞⠓⠁⠞⠀⠓⠁⠧⠑⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠎⠕⠗⠞⠀⠕⠋⠀⠍⠥⠇⠞⠊⠝⠁⠞⠊⠕⠝⠁⠇⠀⠎⠞⠗⠥⠉⠞⠥⠗⠑⠀⠁⠎⠀⠁⠇⠇⠀⠕⠋⠀⠞⠓⠑⠀⠧⠁⠗⠊⠕⠥⠎⠀⠕⠞⠓⠑⠗⠀⠋⠕⠗⠞⠥⠝⠑⠀⠢⠴⠴⠀⠉⠕⠗⠏⠕⠗⠁⠞⠑⠀⠉⠕⠍⠏⠁⠝⠊⠑⠎⠀⠊⠝⠀⠗⠑⠁⠇⠊⠞⠽⠀⠞⠕⠀⠉⠓⠁⠝⠛⠑⠀⠎⠕⠉⠊⠑⠞⠽⠀⠺⠑⠀⠗⠑⠁⠇⠇⠽⠀⠝⠑⠑⠙⠀⠞⠕⠀⠙⠕⠀⠎⠕⠍⠑⠞⠓⠊⠝⠛⠀⠃⠑⠞⠞⠑⠗⠀⠞⠓⠁⠝⠀⠉⠗⠑⠁⠞⠊⠝⠛⠀⠞⠑⠉⠓⠝⠕⠇⠕⠛⠊⠑⠎⠀⠞⠓⠁⠞⠀⠚⠥⠎⠞⠀⠁⠇⠇⠕⠺⠀⠥⠎⠀⠞⠕⠀⠍⠊⠗⠗⠕⠗⠀⠓⠕⠺⠀⠎⠕⠉⠊⠑⠞⠽⠀⠺⠕⠗⠅⠎⠀⠁⠝⠽⠺⠁⠽⠀⠺⠑⠀⠝⠑⠑⠙⠀⠞⠕⠀⠉⠗⠑⠁⠞⠑⠀⠞⠑⠉⠓⠝⠕⠇⠕⠛⠊⠑⠎⠀⠞⠓⠁⠞⠀⠋⠕⠗⠛⠑⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠃⠑⠊⠝⠛⠀⠁⠃⠇⠑⠀⠞⠕⠀⠺⠕⠗⠅⠀⠺⠊⠞⠓⠀⠑⠁⠉⠓⠀⠕⠞⠓⠑⠗⠀⠁⠝⠙⠀⠞⠓⠁⠞⠄⠎⠀⠙⠊⠋⠋⠑⠗⠑⠝⠞⠀⠞⠕⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠃⠑⠊⠝⠛⠀⠁⠃⠇⠑⠀⠞⠕⠀⠉⠕⠍⠍⠥⠝⠊⠉⠁⠞⠑⠀⠺⠊⠞⠓⠀⠑⠁⠉⠓⠀⠕⠞⠓⠑⠗⠀⠊⠞⠄⠎⠀⠁⠇⠎⠕⠀⠛⠕⠞⠀⠞⠕⠀⠃⠑⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠃⠑⠊⠝⠛⠀⠁⠃⠇⠑⠀⠞⠕⠀⠕⠗⠛⠁⠝⠊⠵⠑⠀⠁⠝⠙⠀⠞⠗⠥⠎⠞⠀⠞⠓⠁⠞⠀⠑⠁⠉⠓⠀⠕⠞⠓⠑⠗⠀⠊⠎⠀⠛⠕⠊⠝⠛⠀⠞⠕⠀⠙⠕⠀⠺⠓⠁⠞⠀⠺⠓⠁⠞⠀⠞⠓⠑⠽⠀⠝⠑⠑⠙⠀⠞⠕⠀⠙⠕⠀⠊⠝⠀⠕⠗⠙⠑⠗⠀⠞⠕⠀⠓⠁⠧⠑⠀⠎⠕⠍⠑⠀⠎⠕⠗⠞⠀⠕⠋⠀⠎⠓⠁⠗⠑⠙⠀⠉⠕⠝⠉⠇⠥⠎⠊⠕⠝⠀⠕⠗⠀⠗⠁⠍⠊⠋⠊⠉⠁⠞⠊⠕⠝⠀⠞⠕⠀⠞⠓⠑⠀⠉⠕⠕⠏⠑⠗⠁⠞⠊⠕⠝⠀⠁⠝⠙⠀⠞⠓⠁⠞⠄⠎⠀⠗⠑⠁⠇⠇⠽⠀⠁⠀⠃⠊⠛⠀⠉⠕⠍⠏⠕⠝⠑⠝⠞⠀⠕⠋⠀⠺⠑⠃⠀⠒⠀⠺⠑⠃⠀⠒⠀⠊⠎⠀⠗⠑⠁⠇⠇⠽⠀⠁⠃⠕⠥⠞⠀⠁⠇⠇⠕⠺⠊⠝⠛⠀⠏⠑⠕⠏⠇⠑⠀⠞⠕⠀⠉⠕⠍⠑⠀⠞⠕⠛⠑⠞⠓⠑⠗⠀⠁⠝⠙⠀⠉⠕⠕⠗⠙⠊⠝⠁⠞⠑⠀⠞⠓⠑⠊⠗⠀⠑⠋⠋⠕⠗⠞⠎⠀⠋⠕⠗⠀⠎⠕⠍⠑⠞⠓⠊⠝⠛⠀⠛⠗⠑⠁⠞⠑⠗⠀⠞⠓⠑⠀⠞⠓⠁⠝⠀⠞⠓⠑⠀⠎⠥⠍⠀⠕⠋⠀⠊⠞⠎⠀⠏⠁⠗⠞⠎⠀⠪⠍⠥⠎⠊⠉⠻

With Git Actions Workflow file for this run as example in real-time

available OS's: [ windows-latest, macos-latest, ubuntu-latest ]

name: Cross-platform matrix run
on: [push]
jobs:
  build:
    runs-on: ${{ matrix.os }}
    strategy:
      matrix:
        os: [ubuntu-latest]
        python-version: ['3.6', '3.9']
        exclude:
          - os: ubuntu-latest
            python-version: '3.6'
    steps:
      - uses: actions/[email protected]
      - name: Set up Python
        uses: actions/[email protected]
        with:
          python-version: ${{ matrix.python-version }}
      - name: Install dependencies 
        run: pip install youtube_transcript_api scrapetube codext
      - name: Web3 Foundation videos to braille language 
        run: python tube.py

For Support && Nominations

  • Display name. KSMNETWORK

  • Email [email protected]

  • Riot @gtoocool:matrix.org

  • KUSAMA (KSM) Address

  • H1bSKJxoxzxYRCdGQutVqFGeW7xU3AcN6vyEdZBU7Qb1rsZ

  • PolkaDOT (DOT) Address:

  • 15FxvBFDd3X7H9qcMGqsiuvFYEg4D3mBoTA2LQufreysTHKA

  • https://ksm.network

Owner
Little Endian
Riot @gtoocool:matrix.org                  KUSAMA Address:  H1bSKJxoxzxYRCdGQutVqFGeW7xU3AcN6vyEdZBU7Qb1rsZ
Little Endian
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
Training open neural machine translation models

Train Opus-MT models This package includes scripts for training NMT models using MarianNMT and OPUS data for OPUS-MT. More details are given in the Ma

Language Technology at the University of Helsinki 167 Jan 03, 2023
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyễn Minh Phương 22 Dec 06, 2022
Conditional probing: measuring usable information beyond a baseline

Conditional probing: measuring usable information beyond a baseline

John Hewitt 20 Dec 15, 2022
Machine translation models released by the Gourmet project

Gourmet Models Overview The Gourmet project has released several machine translation models to translate low-resource languages. This repository conta

Edinburgh NLP 5 Dec 08, 2021
PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

data2vec-pytorch PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (F

Aryan Shekarlaban 105 Jan 04, 2023
NLP techniques such as named entity recognition, sentiment analysis, topic modeling, text classification with Python to predict sentiment and rating of drug from user reviews.

This file contains the following documents sumbited for Baruch CIS9665 group 9 fall 2021. 1. Dataset: drug_reviews.csv 2. python codes for text classi

Aarif Munwar Jahan 2 Jan 04, 2023
自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

ja-timex 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 概要 ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。

Yuki Okuda 116 Nov 09, 2022
Korea Spell Checker

한국어 문서 koSpellPy Korean Spell checker How to use Install pip install kospellpy Use from kospellpy import spell_init spell_checker = spell_init() # d

kangsukmin 2 Oct 20, 2021
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
[KBS] Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks

#Sentic GCN Introduction This repository was used in our paper: Aspect-Based Sentiment Analysis via Affective Knowledge Enhanced Graph Convolutional N

Akuchi 35 Nov 16, 2022
Script to generate VAD dataset used in Asteroid recipe

About the dataset LibriVAD is an open source dataset for voice activity detection in noisy environments. It is derived from LibriSpeech signals (clean

11 Sep 15, 2022
Ceaser-Cipher - The Caesar Cipher technique is one of the earliest and simplest method of encryption technique

Ceaser-Cipher The Caesar Cipher technique is one of the earliest and simplest me

Lateefah Ajadi 2 May 12, 2022
ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python)

ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python) 日本語は以下に続きます (Japanese follows) English: This book is written in Japanese and primaril

Ryuichi Yamamoto 189 Dec 29, 2022
Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).

XLM-EMO: Multilingual Emotion Prediction in Social Media Text Abstract Detecting emotion in text allows social and computational scientists to study h

MilaNLP 35 Sep 17, 2022
Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation (SIGGRAPH Asia 2021)

Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation This repository contains the implementation of the following paper: Live Speech

OldSix 575 Dec 31, 2022
:id: A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.

Dedupe Python Library dedupe is a python library that uses machine learning to perform fuzzy matching, deduplication and entity resolution quickly on

Dedupe.io 3.6k Jan 02, 2023
Conversational text Analysis using various NLP techniques

Conversational text Analysis using various NLP techniques

Rita Anjana 159 Jan 06, 2023
Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization

Line as a Visual Sentence with LineTR This repository contains the inference code, pretrained model, and demo scripts of the following paper. It suppo

SungHo Yoon 158 Dec 27, 2022
2021 2학기 데이터크롤링 기말프로젝트

공지 주제 웹 크롤링을 이용한 취업 공고 스케줄러 스케줄 주제 정하기 코딩하기 핵심 코드 설명 + 피피티 구조 구상 // 12/4 토 피피티 + 스크립트(대본) 제작 + 녹화 // ~ 12/10 ~ 12/11 금~토 영상 편집 // ~12/11 토 웹크롤러 사람인_평균

Choi Eun Jeong 2 Aug 16, 2022