Official Repository for the paper "Improving Baselines in the Wild".

Related tags

Deep Learningwilds
Overview

iWildCam and FMoW baselines (WILDS)

This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed)

For general instructions, please refer to the original repositiory.

This repository contains code used to produce experimental results presented in:

Improving Baselines in the Wild

Apart from minor edits, the only main changes we introduce are:

  • --validate_every flag (default: 1000) to specify the frequency (number of training steps) of cross-validation/checkpoint tracking.
  • sub_val_metric option in the dataset (see examples/configs/datasets.py) to specify a secondary metric to be tracked during training. This activates additional cross-validation and checkpoint tracking for the specified metric.

Results

NB: To reproduce the numbers from the paper, the right PyTorch version must be used. All our experiments have been conducted using 1.9.0+cu102, except for + higher lr rows in Table 2/FMoW (which we ran for the camera-ready and for the public release) for which 1.10.0+cu102 was used.

The training scripts, logs, and model checkpoints for the best configurations from our experiments can be found here for iWildCam & FMoW.

iWildCam

CV based on "Valid F1"

Split / Metric mean (std) 3 runs
IID Valid Acc 82.5 (0.8) [0.817, 0.835, 0.822]
IID Valid F1 46.7 (1.0) [0.456, 0.481, 0.464]
IID Test Acc 76.2 (0.1) [0.762, 0.763, 0.761]
IID Test F1 47.9 (2.1) [0.505, 0.479, 0.453]
Valid Acc 64.1 (1.7) [0.644, 0.619, 0.661]
Valid F1 38.3 (0.9) [0.39, 0.371, 0.389]
Test Acc 69.0 (0.3) [0.69, 0.694, 0.687]
Test F1 32.1 (1.2) [0.338, 0.31, 0.314]

CV based on "Valid Acc"

Split / Metric mean (std) 3 runs
IID Valid Acc 82.6 (0.7) [0.836, 0.821, 0.822]
IID Valid F1 46.2 (0.9) [0.472, 0.45, 0.464]
IID Test Acc 75.8 (0.4) [0.76, 0.753, 0.761]
IID Test F1 44.9 (0.4) [0.444, 0.45, 0.453]
Valid Acc 66.6 (0.4) [0.666, 0.672, 0.661]
Valid F1 36.6 (2.1) [0.369, 0.339, 0.389]
Test Acc 68.6 (0.3) [0.688, 0.682, 0.687]
Test F1 28.7 (2.0) [0.279, 0.268, 0.314]

FMoW

CV based on "Valid Region"

Split / Metric mean (std) 3 runs
IID Valid Acc 63.9 (0.2) [0.64, 0.636, 0.641]
IID Valid Region 62.2 (0.5) [0.623, 0.616, 0.628]
IID Valid Year 49.8 (1.8) [0.52, 0.475, 0.5]
IID Test Acc 62.3 (0.2) [0.626, 0.621, 0.621]
IID Test Region 60.9 (0.6) [0.617, 0.603, 0.606]
IID Test Year 43.2 (1.1) [0.438, 0.417, 0.442]
Valid Acc 62.1 (0.0) [0.62, 0.621, 0.621]
Valid Region 52.5 (1.0) [0.538, 0.513, 0.524]
Valid Year 60.5 (0.2) [0.602, 0.605, 0.608]
Test Acc 55.6 (0.2) [0.555, 0.554, 0.558]
Test Region 34.8 (1.5) [0.369, 0.334, 0.34]
Test Year 50.2 (0.4) [0.499, 0.498, 0.508]

CV based on "Valid Acc"

Split / Metric mean (std) 3 runs
IID Valid Acc 64.0 (0.1) [0.641, 0.639, 0.641]
IID Valid Region 62.3 (0.4) [0.623, 0.617, 0.628]
IID Valid Year 50.8 (0.6) [0.514, 0.509, 0.5]
IID Test Acc 62.3 (0.4) [0.628, 0.62, 0.621]
IID Test Region 61.1 (0.6) [0.62, 0.608, 0.606]
IID Test Year 43.6 (1.4) [0.45, 0.417, 0.442]
Valid Acc 62.1 (0.0) [0.621, 0.621, 0.621]
Valid Region 51.4 (1.3) [0.522, 0.496, 0.524]
Valid Year 60.6 (0.3) [0.608, 0.601, 0.608]
Test Acc 55.6 (0.2) [0.556, 0.554, 0.558]
Test Region 34.2 (1.2) [0.357, 0.329, 0.34]
Test Year 50.2 (0.5) [0.496, 0.501, 0.508]

BibTex

@inproceedings{irie2021improving,
      title={Improving Baselines in the Wild}, 
      author={Kazuki Irie and Imanol Schlag and R\'obert Csord\'as and J\"urgen Schmidhuber},
      booktitle={Workshop on Distribution Shifts, NeurIPS},
      address={Virtual only},
      year={2021}
}
Owner
Kazuki Irie
Kazuki Irie
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
A TikTok-like recommender system for GitHub repositories based on Gorse

GitRec GitRec is the missing recommender system for GitHub repositories based on Gorse. Architecture The trending crawler crawls trending repositories

337 Jan 04, 2023
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021] SPEC: Seeing People in the Wild with an Estimated Camera, Muhammed Kocabas, Chun-

Muhammed Kocabas 187 Dec 26, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

[SIGGRAPH Asia 2021] Time-Travel Rephotography [Project Website] Many historical people were only ever captured by old, faded, black and white photos,

298 Jan 02, 2023
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro

Bingchen Zhao 83 Dec 15, 2022
coldcuts is an R package to automatically generate and plot segmentation drawings in R

coldcuts coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays. The name is inspired by one of It

2 Sep 03, 2022
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022