RL agent to play μRTS with Stable-Baselines3

Overview

Gym-μRTS with Stable-Baselines3/PyTorch

This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS using Stable-Baselines3 library. Apart from reproducibility, this might open access to a diverse set of well tested algorithms, and toolings for training, evaluations, and more.

Original paper: Gym-μRTS: Toward Affordable Deep Reinforcement Learning Research in Real-time Strategy Games.

Original code: gym-microrts-paper.

demo.gif

Install

Prerequisites:

  • Python 3.7+
  • Java 8.0+
  • FFmpeg (for video capturing)
git clone https://github.com/kachayev/gym-microrts-paper-sb3
cd gym-microrts-paper-sb3
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt

Note that I use newer version of gym-microrts compared to the one that was originally used for the paper.

Training

To traing an agent:

$ python ppo_gridnet_diverse_encode_decode_sb3.py

If everything is setup correctly, you'll see typicall SB3 verbose logging:

Using cpu device
---------------------------------
| rollout/           |          |
|    ep_len_mean     | 2e+03    |
|    ep_rew_mean     | 0.0      |
| time/              |          |
|    fps             | 179      |
|    iterations      | 1        |
|    time_elapsed    | 11       |
|    total_timesteps | 2048     |
---------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 1.72e+03     |
|    ep_rew_mean          | -5.0         |
| time/                   |              |
|    fps                  | 55           |
|    iterations           | 2            |
|    time_elapsed         | 74           |
|    total_timesteps      | 4096         |
| train/                  |              |
|    approx_kl            | 0.0056759235 |
|    clip_fraction        | 0.0861       |
|    clip_range           | 0.2          |
|    entropy_loss         | -5.65        |
|    explained_variance   | 0.412        |
|    learning_rate        | 0.0003       |
|    loss                 | -0.024       |
|    n_updates            | 10           |
|    policy_gradient_loss | -0.00451     |
|    value_loss           | 0.00413      |
------------------------------------------

As soon as correctness of the implementation is verified, I will provide details on how to use RL Baselines3 Zoo for training and evaluations.

Implementational Caveats

A few notes / pain points regarding the implementation of the alrogithms, and the process of integrating it with stable-baselines3:

  • Gym does not ship a space for "array of multidiscrete" use case (let's be honest, it's not very common). But it gives an option for defining your space when necessary. A new space, when defined, is not easy to integrate into SB3. In a few different places SB3 raises NotImplementedError facing unknown space (example 1, example 2).
  • Seems like switching to fully rolled out MutliDiscrete space definition has a significant performance penalty. Still investigating if this can be improved.
  • Invalid masking is implemented by passing masks into observations from the wrapper (the observation space is replaced with gym.spaces.Dict to hold both observations and masks). By doing it this way, masks are now available for policy, and fit rollout buffer layout. Masking is implemented by setting logits into -inf (or to a rather small number).

Look for xxx(hack) comments in the code for more details.

Owner
Oleksii Kachaiev
Principal Software Engineer @ Riot, League of Legends Data/ML/AI. Research interests: human-level intelligence for RTS games and complex open world simulations.
Oleksii Kachaiev
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
PyTorch implementation of UNet++ (Nested U-Net).

PyTorch implementation of UNet++ (Nested U-Net) This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architect

4ui_iurz1 642 Jan 04, 2023
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

LEI 7 Nov 29, 2022
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022