The official github repository for Towards Continual Knowledge Learning of Language Models

Overview

Towards Continual Knowledge Learning of Language Models

This is the official github repository for Towards Continual Knowledge Learning of Language Models.

In order to reproduce our results, take the following steps:

1. Create conda environment and install requirements

conda create -n ckl python=3.8 && conda activate ckl
pip install -r requirements.txt

Also, make sure to install the correct version of pytorch corresponding to the CUDA version and environment: Refer to https://pytorch.org/

#For CUDA 10.x
pip3 install torch torchvision torchaudio
#For CUDA 11.x
pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

2. Download the data used for the experiments.

To download only the CKL benchmark dataset:

python download_ckl_data.py

To download ALL of the data used for the experiments (required to reproduce results):

python download_all_data.py

To download the (continually pretrained) model checkpoints of the main experiment (required to reproduce results):

python download_model_checkpoints.py

For the other experimental settings such as multiple CKL phases, GPT-2, we do not separately provide the continually pretrained model checkpoints.

3. Reproducing Experimental Results

We provide all the configs in order to reproduce the zero-shot results of our paper. We only provide the model checkpoints for the main experimental setting (full_setting) which can be downloaded with the command above.

configs
├── full_setting
│   ├── evaluation
│   |   ├── invariantLAMA
│   |   |   ├── t5_baseline.json
│   |   |   ├── t5_kadapters.json
│   |   |   ├── ...
│   |   ├── newLAMA
│   |   ├── newLAMA_easy
│   |   ├── updatedLAMA
│   ├── training
│   |   ├── t5_baseline.json
│   |   ├── t5_kadapters.json
│   |   ├── ...
├── GPT2
│   ├── ...
├── kilt
│   ├── ...
├── small_setting
│   ├── ...
├── split
│   ├── ...                    

Components in each configurations file

  • input_length (int) : the input sequence length
  • output_length (int) : the output sequence length
  • num_train_epochs (int) : number of training epochs
  • output_dir (string) : the directory to save the model checkpoints
  • dataset (string) : the dataset to perform zero-shot evaluation or continual pretraining
  • dataset_version (string) : the version of the dataset ['full', 'small', 'debug']
  • train_batch_size (int) : batch size used for training
  • learning rate (float) : learning rate used for training
  • model (string) : model name in huggingface models (https://huggingface.co/models)
  • method (string) : method being used ['baseline', 'kadapter', 'lora', 'mixreview', 'modular_small', 'recadam']
  • freeze_level (int) : how much of the model to freeze during traininig (0 for none, 1 for freezing only encoder, 2 for freezing all of the parameters)
  • gradient_accumulation_steps (int) : gradient accumulation used to match the global training batch of each method
  • ngpu (int) : number of gpus used for the run
  • num_workers (int) : number of workers for the Dataloader
  • resume_from_checkpoint (string) : null by default. directory to model checkpoint if resuming from checkpoint
  • accelerator (string) : 'ddp' by default. the pytorch lightning accelerator to be used.
  • use_deepspeed (bool) : false by default. Currently not extensively tested.
  • CUDA_VISIBLE_DEVICES (string) : gpu devices that are made available for this run (e.g. "0,1,2,3", "0")
  • wandb_log (bool) : whether to log experiment through wandb
  • wandb_project (string) : project name of wandb
  • wandb_run_name (string) : the name of this training run
  • mode (string) : 'pretrain' for all configs
  • use_lr_scheduling (bool) : true if using learning rate scheduling
  • check_validation (bool) : true for evaluation (no training)
  • checkpoint_path (string) : path to the model checkpoint that is used for evaluation
  • output_log (string) : directory to log evaluation results to
  • split_num (int) : default is 1. more than 1 if there are multile CKL phases
  • split (int) : which CKL phase it is

This is an example of getting the invariantLAMA zero-shot evaluation of continually pretrained t5_kadapters

python run.py --config configs/full_setting/evaluation/invariantLAMA/t5_kadapters.json

This is an example of performing continual pretraining on CC-RecentNews (main experiment) with t5_kadapters

python run.py --config configs/full_setting/training/t5_kadapters.json

Reference

@article{jang2021towards,
  title={Towards Continual Knowledge Learning of Language Models},
  author={Jang, Joel and Ye, Seonghyeon and Yang, Sohee and Shin, Joongbo and Han, Janghoon and Kim, Gyeonghun and Choi, Stanley Jungkyu and Seo, Minjoon},
  journal={arXiv preprint arXiv:2110.03215},
  year={2021}
}
Owner
Joel Jang | 장요엘
Aspiring NLP researcher and a MS student at the Graduate School of AI, KAIST advised by Minjoon Seo
Joel Jang | 장요엘
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021
Mask-invariant Face Recognition through Template-level Knowledge Distillation

Mask-invariant Face Recognition through Template-level Knowledge Distillation This is the official repository of "Mask-invariant Face Recognition thro

Fadi Boutros 35 Dec 06, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes" Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 A recurrent atte

5 Nov 19, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro

Bingchen Zhao 83 Dec 15, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
training script for space time memory network

Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem

Yuxi Li 100 Dec 20, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023