Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Overview

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo

framework

This repository includes the source code for our CVPR 2021 paper on multi-view multi-person 3D pose estimation. Please read our paper for more details at https://arxiv.org/abs/2104.02273. The project webpage is available here.

Bibtex:

@InProceedings{Lin_2021_CVPR,
    author    = {Lin, Jiahao and Lee, Gim Hee},
    title     = {Multi-View Multi-Person 3D Pose Estimation With Plane Sweep Stereo},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {11886-11895}
}

Environment

Our code is tested on

  • Python 3.8.5
  • PyTorch 1.6.0 & torchvision 0.7.0
  • CUDA 11.2

Preparing Data

Download following data before using the code in this repository:

The data should be organized as follows:

    ROOTDIR/
        └── data/
            └── Campus/
                └── actorsGT.mat
                └── calibration_campus.json
                └── pred_campus_maskrcnn_hrnet_coco.pkl
            └── Shelf/
                └── actorsGT.mat
                └── calibration_shelf.json
                └── pred_shelf_maskrcnn_hrnet_coco.pkl
            └── Panoptic/
                └── 160224_haggling1/
                └── 160226_haggling1/
                └── ...
                └── keypoints_train_results.json
                └── keypoints_validation_results.json
            └── panoptic_training_pose.pkl
        └── output/
            └── campus_synthetic/mvmppe/config/model_best_pretrained.pth.tar
            └── shelf_synthetic/mvmppe/config/model_best_pretrained.pth.tar
            └── panoptic/mvmppe/config/model_best_pretrained.pth.tar
        └── ...

Training and Inference

Below are the commands for training our model on different datasets.

The Campus dataset:

    python run/train.py --cfg configs/campus/config.yaml

The Shelf dataset:

    python run/train.py --cfg configs/shelf/config.yaml

The CMU Panoptic dataset:

    python run/train.py --cfg configs/panoptic/config.yaml

Below are the commands for performing inference with our pre-trained models.

The Campus dataset:

    python run/validate.py --cfg configs/campus/config.yaml -t pretrained

The Shelf dataset:

    python run/validate.py --cfg configs/shelf/config.yaml -t pretrained

The CMU Panoptic dataset:

    python run/validate.py --cfg configs/panoptic/config.yaml -t pretrained
Owner
Jiahao Lin
Jiahao Lin
Multimodal commodity image retrieval 多模态商品图像检索

Multimodal commodity image retrieval 多模态商品图像检索 Not finished yet... introduce explain:The specific description of the project and the product image dat

hongjie 8 Nov 25, 2022
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Tutorial on scikit-learn and IPython for parallel machine learning

Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra

Olivier Grisel 1.6k Dec 26, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022