Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Overview

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021)

This repository contains the code for reproducing the paper: Training GANs with Stronger Augmentations via Contrastive Discriminator by Jongheon Jeong and Jinwoo Shin.

TL;DR: We propose a novel discriminator of GAN showing that contrastive representation learning, e.g., SimCLR, and GAN can benefit each other when they are jointly trained.

Demo

Qualitative comparison of unconditional generations from GANs on high-resoultion, yet limited-sized datasets of AFHQ-Dog (4739 samples), AFHQ-Cat (5153 samples) and AFHQ-Wild (4738 samples) datasets.

Overview

Teaser

An overview of Contrastive Discriminator (ContraD). The representation of ContraD is not learned from the discriminator loss (L_dis), but from two contrastive losses (L+_con and L-_con), each is for the real and fake samples, respectively. The actual discriminator that minimizes L_dis is simply a 2-layer MLP head upon the learned contrastive representation.

Dependencies

Currently, the following environment has been confirmed to run the code:

  • python >= 3.6
  • pytorch >= 1.6.0 (See https://pytorch.org/ for the detailed installation)
  • tensorflow-gpu == 1.14.0 to run test_tf_inception.py for FID/IS evaluations
  • Other requirements can be found in environment.yml (for conda users) or environment_pip.txt (for pip users)
#### Install dependencies via conda.
# The file also includes `pytorch`, `tensorflow-gpu=1.14`, and `cudatoolkit=10.1`.
# You may have to set the correct version of `cudatoolkit` compatible to your system.
# This command creates a new conda environment named `contrad`.
conda env create -f environment.yml

#### Install dependencies via pip.
# It assumes `pytorch` and `tensorflow-gpu` are already installed in the current environment.
pip install -r environment_pip.txt

Preparing datasets

By default, the code assumes that all the datasets are placed under data/. You can change this path by setting the $DATA_DIR environment variable.

CIFAR-10/100 can be automatically downloaded by running any of the provided training scripts.

CelebA-HQ-128:

  1. Download the CelebA-HQ dataset and extract it under $DATA_DIR.
  2. Run third_party/preprocess_celeba_hq.py to resize and split the 1024x1024 images in $DATA_DIR/CelebAMask-HQ/CelebA-HQ-img:
    python third_party/preprocess_celeba_hq.py
    

AFHQ datasets:

  1. Download the AFHQ dataset and extract it under $DATA_DIR.
  2. One has to reorganize the directories in $DATA_DIR/afhq to make it compatible with torchvision.datasets.ImageFolder. Please refer the detailed file structure provided in below.

The structure of $DATA_DIR should be roughly like as follows:

$DATA_DIR
├── cifar-10-batches-py   # CIFAR-10
├── cifar-100-python      # CIFAR-100
├── CelebAMask-HQ         # CelebA-HQ-128
│   ├── CelebA-128-split  # Resized to 128x128 from `CelebA-HQ-img`
│   │   ├── train
│   │   │   └── images
│   │   │       ├── 0.jpg
│   │   │       └── ...
│   │   └── test
│   ├── CelebA-HQ-img     # Original 1024x1024 images
│   ├── CelebA-HQ-to-CelebA-mapping.txt
│   └── README.txt
└── afhq                  # AFHQ datasets
    ├── cat
    │   ├── train
    │   │   └── images
    │   │       ├── flickr_cat_00xxxx.jpg
    │   │       └── ...
    │   └── val
    ├── dog
    └── wild

Scripts

Training Scripts

We provide training scripts to reproduce the results in train_*.py, as listed in what follows:

File Description
train_gan.py Train a GAN model other than StyleGAN2. DistributedDataParallel supported.
train_stylegan2.py Train a StyleGAN2 model. It additionally implements the details of StyleGAN2 training, e.g., R1 regularization and EMA. DataParallel supported.
train_stylegan2_contraD.py Training script optimized for StyleGAN2 + ContraD. It runs faster especially on high-resolution datasets, e.g., 512x512 AFHQ. DataParallel supported.

The samples below demonstrate how to run each script to train GANs with ContraD. More instructions to reproduce our experiments, e.g., other baselines, can be found in EXPERIMENTS.md. One can modify CUDA_VISIBLE_DEVICES to further specify GPU number(s) to work on.

# SNDCGAN + ContraD on CIFAR-10
CUDA_VISIBLE_DEVICES=0 python train_gan.py configs/gan/cifar10/c10_b512.gin sndcgan \
--mode=contrad --aug=simclr --use_warmup

# StyleGAN2 + ContraD on CIFAR-10 - it is OK to simply use `train_stylegan2.py` even with ContraD
python train_stylegan2.py configs/gan/stylegan2/c10_style64.gin stylegan2 \
--mode=contrad --aug=simclr --lbd_r1=0.1 --no_lazy --halflife_k=1000 --use_warmup

# Nevertheless, StyleGAN2 + ContraD can be trained more efficiently with `train_stylegan2_contraD.py` 
python train_stylegan2_contraD.py configs/gan/stylegan2/afhq_dog_style64.gin stylegan2_512 \
--mode=contrad --aug=simclr_hq --lbd_r1=0.5 --halflife_k=20 --use_warmup \
--evaluate_every=5000 --n_eval_avg=1 --no_gif 

Testing Scripts

  • The script test_gan_sample.py generates and saves random samples from a pre-trained generator model into *.jpg files. For example,

    CUDA_VISIBLE_DEVICES=0 python test_gan_sample.py PATH/TO/G.pt sndcgan --n_samples=10000
    

    will load the generator stored at PATH/TO/G.pt, generate n_samples=10000 samples from it, and save them under PATH/TO/samples_*/.

  • The script test_gan_sample_cddls.py additionally takes the discriminator, and a linear evaluation head obtained from test_lineval.py to perform class-conditional cDDLS. For example,

    CUDA_VISIBLE_DEVICES=0 python test_gan_sample_cddls.py LOGDIR PATH/TO/LINEAR.pth.tar sndcgan
    

    will load G and D stored in LOGDIR, the linear head stored at PATH/TO/LINEAR.pth.tar, and save the generated samples from cDDLS under LOGDIR/samples_cDDLS_*/.

  • The script test_lineval.py performs linear evaluation for a given pre-trained discriminator model stored at model_path:

    CUDA_VISIBLE_DEVICES=0 python test_lineval.py PATH/TO/D.pt sndcgan
    
  • The script test_tf_inception.py computes Fréchet Inception distance (FID) and Inception score (IS) with TensorFlow backend using the original code of FID available at https://github.com/bioinf-jku/TTUR. tensorflow-gpu <= 1.14.0 is required to run this script. It takes a directory of generated samples (e.g., via test_gan_sample.py) and an .npz of pre-computed statistics:

    python test_tf_inception.py PATH/TO/GENERATED/IMAGES/ PATH/TO/STATS.npz --n_imgs=10000 --gpu=0 --verbose
    

    A pre-computed statistics file per dataset can be either found in http://bioinf.jku.at/research/ttur/, or manually computed - you can refer third_party/tf/examples for the sample scripts to this end.

Citation

@inproceedings{jeong2021contrad,
  title={Training {GAN}s with Stronger Augmentations via Contrastive Discriminator},
  author={Jongheon Jeong and Jinwoo Shin},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=eo6U4CAwVmg}
}
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
Fast and Easy Infinite Neural Networks in Python

Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural

Google 1.9k Jan 09, 2023
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir

10 Dec 08, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022