Applying "Load What You Need: Smaller Versions of Multilingual BERT" to LaBSE

Overview

smaller-LaBSE

LaBSE(Language-agnostic BERT Sentence Embedding) is a very good method to get sentence embeddings across languages. But it is hard to fine-tune due to the parameter size(~=471M) of this model. For instance, if I fine-tune this model with Adam optimizer, I need the GPU that has VRAM at least 7.5GB = 471M * (parameters 4 bytes + gradients 4 bytes + momentums 4 bytes + variances 4 bytes). So I applied "Load What You Need: Smaller Multilingual Transformers" method to LaBSE to reduce parameter size since most of this model's parameter is the word embedding table(~=385M).

The smaller version of LaBSE is evaluated for 14 languages using tatoeba dataset. It shows we can reduce LaBSE's parameters to 47% without a big performance drop.

If you need the PyTorch version, see https://github.com/Geotrend-research/smaller-transformers. I followed most of the steps in the paper.

Model #param(transformer) #param(word embedding) #param(model) vocab size
tfhub_LaBSE 85.1M 384.9M 470.9M 501,153
15lang_LaBSE 85.1M 133.1M 219.2M 173,347

Used Languages

  • English (en or eng)
  • French (fr or fra)
  • Spanish (es or spa)
  • German (de or deu)
  • Chinese (zh, zh_classical or cmn)
  • Arabic (ar or ara)
  • Italian (it or ita)
  • Japanese (ja or jpn)
  • Korean (ko or kor)
  • Dutch (nl or nld)
  • Polish (pl or pol)
  • Portuguese (pt or por)
  • Thai (th or tha)
  • Turkish (tr or tur)
  • Russian (ru or rus)

I selected the languages multilingual-USE supports.

Scripts

A smaller version of the vocab was constructed based on the frequency of tokens using Wikipedia dump data. I followed most of the algorithms in the paper to extract proper vocab for each language and rewrite it for TensorFlow.

Convert weight

mkdir -p downloads/labse-2
curl -L https://tfhub.dev/google/LaBSE/2?tf-hub-format=compressed -o downloads/labse-2.tar.gz
tar -xf downloads/labse-2.tar.gz -C downloads/labse-2/
python save_as_weight_from_saved_model.py

Select vocabs

./download_dataset.sh
python select_vocab.py

Make smaller LaBSE

./make_smaller_labse.py

Evaluate tatoeba

./download_tatoeba_dataset.sh
# evaluate TFHub LaBSE
./evaluate_tatoeba.sh
# evaluate the smaller LaBSE
./evaluate_tatoeba.sh \
    --model models/LaBSE_en-fr-es-de-zh-ar-zh_classical-it-ja-ko-nl-pl-pt-th-tr-ru/1/ \
    --preprocess models/LaBSE_en-fr-es-de-zh-ar-zh_classical-it-ja-ko-nl-pl-pt-th-tr-ru_preprocess/1/

Results

Tatoeba

Model fr es de zh ar it ja ko nl pl pt th tr ru avg
tfHub_LaBSE(en→xx) 95.90 98.10 99.30 96.10 90.70 95.30 96.40 94.10 97.50 97.90 95.70 82.85 98.30 95.30 95.25
tfHub_LaBSE(xx→en) 96.00 98.80 99.40 96.30 91.20 94.00 96.50 92.90 97.00 97.80 95.40 83.58 98.50 95.30 95.19
15lang_LaBSE(en→xx) 95.20 98.00 99.20 96.10 90.50 95.20 96.30 93.50 97.50 97.90 95.80 82.85 98.30 95.40 95.13
15lang_LaBSE(xx→en) 95.40 98.70 99.40 96.30 91.10 94.00 96.30 92.70 96.70 97.80 95.40 83.58 98.50 95.20 95.08
  • Accuracy(%) of the Tatoeba datasets.
  • If the strategy to select vocabs is changed or the corpus used in the selection step is changed to the corpus similar to the evaluation dataset, it is expected to reduce the performance drop.

References

You might also like...
Comments
  • Training time  and  Machine configuration

    Training time and Machine configuration

    Hi, thanks for your sharing model. I want to make a smaller model, just contains two languages(en, zh). And I want to know the kind of machine GPU and how long does it need to cost?

    opened by QzzIsCoding 2
  • Publish model to HuggingFace Model Hub?

    Publish model to HuggingFace Model Hub?

    I migrated the full LaBSE model from TF to PyTorch and uploaded them to the HuggingFace model hub. I saw this model on the TF hub and started migrating it for uploading to the HF Hub. I realized then that this wasn't published by Google but by @jeongukjae, so wanted to check with you before uploading it.

    I have exported the model locally. I'm happy to check the changes in and upload the exported model if that's fine for you :).

    opened by setu4993 2
Owner
Jeong Ukjae
Jeong Ukjae
Just Another Telegram Ai Chat Bot Written In Python With Pyrogram.

OkaeriChatBot Just another Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher.

Wahyusaputra 2 Dec 23, 2021
Natural Language Processing library built with AllenNLP 🌲🌱

Custom Natural Language Processing with big and small models 🌲🌱

Recognai 65 Sep 13, 2022
PIZZA - a task-oriented semantic parsing dataset

The PIZZA dataset continues the exploration of task-oriented parsing by introducing a new dataset for parsing pizza and drink orders, whose semantics cannot be captured by flat slots and intents.

17 Dec 14, 2022
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine

Microsoft 7.8k Jan 09, 2023
Blackstone is a spaCy model and library for processing long-form, unstructured legal text

Blackstone Blackstone is a spaCy model and library for processing long-form, unstructured legal text. Blackstone is an experimental research project f

ICLR&D 579 Jan 08, 2023
This repository details the steps in creating a Part of Speech tagger using Trigram Hidden Markov Models and the Viterbi Algorithm without using external libraries.

POS-Tagger This repository details the creation of a Part-of-Speech tagger using Trigram Hidden Markov Models to predict word tags in a word sequence.

Raihan Ahmed 1 Dec 09, 2021
Finally, some decent sample sentences

tts-dataset-prompts This repository aims to be a decent set of sentences for people looking to clone their own voices (e.g. using Tacotron 2). Each se

hecko 19 Dec 13, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.09

Keon Lee 142 Jan 06, 2023
⚡ Automatically decrypt encryptions without knowing the key or cipher, decode encodings, and crack hashes ⚡

Translations 🇩🇪 DE 🇫🇷 FR 🇭🇺 HU 🇮🇩 ID 🇮🇹 IT 🇳🇱 NL 🇧🇷 PT-BR 🇷🇺 RU 🇨🇳 ZH ➡️ Documentation | Discord | Installation Guide ⬅️ Fully autom

11.2k Jan 05, 2023
📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation

Well-formed Limericks and Haikus with GPT2 📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation In collaboration with Matthew Korahais &

Bardia Shahrestani 2 May 26, 2022
IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet 🐦 🇮🇩 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

IndoLEM 40 Nov 30, 2022
NLP codes implemented with Pytorch (w/o library such as huggingface)

NLP_scratch NLP codes implemented with Pytorch (w/o library such as huggingface) scripts ├── models: Neural Network models ├── data: codes for dataloa

3 Dec 28, 2021
华为商城抢购手机的Python脚本 Python script of Huawei Store snapping up mobile phones

HUAWEI STORE GO 2021 说明 基于Python3+Selenium的华为商城抢购爬虫脚本,修改自近两年没更新的项目BUY-HW,为女神抢Nova 8(什么时候华为开始学小米玩饥饿营销了?) 原项目的登陆以及抢购部分已经不可用,本项目对原项目进行了改正以适应新华为商城,并增加一些功能

ZhangLiang 111 Dec 22, 2022
Use fastai-v2 with HuggingFace's pretrained transformers

FastHugs Use fastai v2 with HuggingFace's pretrained transformers, see the notebooks below depending on your task: Text classification: fasthugs_seq_c

Morgan McGuire 111 Nov 16, 2022
Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"

ProphetNet-X This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model call

Microsoft 394 Dec 17, 2022
A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

PyCon Taiwan 4 Aug 20, 2022
A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

Alexa 62 Dec 20, 2022
🤕 spelling exceptions builder for lazy people

🤕 spelling exceptions builder for lazy people

Vlad Bokov 3 May 12, 2022
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022