Official code repository of the paper Linear Transformers Are Secretly Fast Weight Programmers.

Overview

Linear Transformers Are Secretly Fast Weight Programmers

This repository contains the code accompanying the paper Linear Transformers Are Secretly Fast Weight Programmers which is published at ICML'21. It also contains the logs of all synthetic experiments.

Synthetic Experiments

Requirements

$ cat req.txt 
jupyter==1.0.0
pandas==1.0.1
seaborn==0.10.0
torch==1.6.0
matplotlib==3.1.3
numpy==1.17.2
pip3 install -r req.txt

Rerun Experiments

Logs are provided in the synthetic/logs folder. The files in that folder are a result of running the following commands:

Setting 1 (capacity):

python3 main.py --begin=20 --end=600 --step=20 --attn_name=softmax --update_rule=sum
python3 main.py --begin=20 --end=600 --step=20 --attn_name=linear --update_rule=sum
python3 main.py --begin=20 --end=600 --step=20 --attn_name=dpfp --attn_arg=1 --update_rule=sum
python3 main.py --begin=20 --end=600 --step=20 --attn_name=dpfp --attn_arg=2 --update_rule=sum

python3 main.py --begin=20 --end=600 --step=20 --attn_name=dpfp --attn_arg=3 --update_rule=sum
python3 main.py --begin=20 --end=600 --step=20 --attn_name=favor --attn_arg=64 --update_rule=sum
python3 main.py --begin=20 --end=600 --step=20 --attn_name=favor --attn_arg=128 --update_rule=sum
python3 main.py --begin=20 --end=600 --step=20 --attn_name=favor --attn_arg=512 --update_rule=sum

Setting 2 (update rule):

python3 main.py --begin=20 --end=200 --step=20 --attn_name=dpfp --attn_arg=1 --update_rule=sum --replace
python3 main.py --begin=20 --end=200 --step=20 --attn_name=dpfp --attn_arg=1 --update_rule=ours --replace
python3 main.py --begin=20 --end=200 --step=20 --attn_name=tanh --update_rule=fwm --replace
python3 main.py --begin=20 --end=200 --step=20 --attn_name=dpfp --attn_arg=1 --update_rule=fwm --replace

python3 main.py --begin=20 --end=200 --step=20 --attn_name=dpfp --attn_arg=2 --update_rule=ours --replace
python3 main.py --begin=20 --end=200 --step=20 --attn_name=linear --update_rule=ours --replace
python3 main.py --begin=20 --end=200 --step=20 --attn_name=favor --attn_arg=64 --update_rule=ours --replace
python3 main.py --begin=20 --end=200 --step=20 --attn_name=favor --attn_arg=128 --update_rule=ours --replace

Generate figures from the logs using the following notebooks:

synthetic/setting1_generate_figure.ipynb
synthetic/setting2_generate_figure.ipynb

Language Modelling & Machine Translation

The toolkit and scripts for language modeling experiments can be found at IDSIA/lmtool-fwms.

For machine translation experiments, we ported the different attention functions implemented in the language modeling toolkit to the multi-head attention implementation in FAIRSEQ.

Citation

@inproceedings{schlag2021linear,
      title={Linear Transformers Are Secretly Fast Weight Programmers}, 
      author={Imanol Schlag and Kazuki Irie and J\"urgen Schmidhuber},
      booktitle={Proc. Int. Conf. on Machine Learning (ICML)},
      address = {Virtual only},
      month = jul,
      year={2021}
}
Owner
Imanol Schlag
Imanol Schlag
ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation

ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da

Chen Yuanqi 9 Jun 24, 2022
Codename generator using WordNet parts of speech database

codenames Codename generator using WordNet parts of speech database References: https://possiblywrong.wordpress.com/2021/09/13/code-name-generator/ ht

possiblywrong 27 Oct 30, 2022
MicBot - MicBot uses Google Translate to speak everyone's chat messages

MicBot MicBot uses Google Translate to speak everyone's chat messages. It can al

2 Mar 09, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch

N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage

Phil Wang 66 Dec 29, 2022
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

42 Dec 31, 2022
Club chatbot

Chatbot Club chatbot Instructions to get the Chatterbot working Step 1. First make sure you are using a version of Python 3 or newer. To check your ve

5 Mar 07, 2022
Dope Wars game engine on StarkNet L2 roll-up

RYO Dope Wars game engine on StarkNet L2 roll-up. What TI-83 drug wars built as smart contract system. Background mechanism design notion here. Initia

104 Dec 04, 2022
This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest

Rachford-Rice Contest This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest. Can you solve the Rachford-Rice problem for all t

13 Sep 20, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 159 Apr 04, 2022
jiant is an NLP toolkit

jiant is an NLP toolkit The multitask and transfer learning toolkit for natural language processing research Why should I use jiant? jiant supports mu

ML² AT CILVR 1.5k Jan 04, 2023
RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

RuCLIPtiny Zero-shot image classification model for Russian language RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network

Shahmatov Arseniy 26 Sep 20, 2022
STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs

STonKGs STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combin

STonKGs 27 Aug 11, 2022
Python3 to Crystal Translation using Python AST Walker

py2cr.py A code translator using AST from Python to Crystal. This is basically a NodeVisitor with Crystal output. See AST documentation (https://docs.

66 Jul 25, 2022
A demo for end-to-end English and Chinese text spotting using ABCNet.

ABCNet_Chinese A demo for end-to-end English and Chinese text spotting using ABCNet. This is an old model that was trained a long ago, which serves as

Yuliang Liu 45 Oct 04, 2022
Kinky furry assitant based on GPT2

KinkyFurs-V0 Kinky furry assistant based on GPT2 How to run python3 V0.py then, open web browser and go to localhost:8080 Requirements: Flask trans

Sparki 1 Jun 11, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 217 Dec 05, 2022
Source code of the "Graph-Bert: Only Attention is Needed for Learning Graph Representations" paper

Graph-Bert Source code of "Graph-Bert: Only Attention is Needed for Learning Graph Representations". Please check the script.py as the entry point. We

14 Mar 25, 2022
Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"

UNITER: UNiversal Image-TExt Representation Learning This is the official repository of UNITER (ECCV 2020). This repository currently supports finetun

Yen-Chun Chen 680 Dec 24, 2022