Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

Overview

RegNet

Designing Network Design Spaces

Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

Paper | Official Implementation

RegNet offer a very nice design space for neural network architectures. RegNet design space consists of networks with simple structure which authors call "Regular" Networks (RegNet). Models in RegNet design space have higher concentration of models that perform well and generalise well. RegNet models are very efficient and run upto 5 times faster than EfficientNet models on GPUs.

Also RegNet models have been used as a backbone in Tesla FSD Stack.

Overview Of AnyNet

  • Main goal of the paper is to help in better understanding of network design and discover principles that generalize across settings.
  • Explore structure aspeck of network design and arrive at low dimensional design space consisting of simple regualar networks
  • Network width and depth can be explained by a quantized linear function.

AnyNet Design Space

The basic structure of models in AnyNet design space consists of a simple Stem which is then followed by the network body that does majority of the computation and a final network head that predicts the class scores. The stem and head networks are kept as simple as possible. The network body consists of 4 stages that operate at progressively lower resolutions.

AnyNet

Structure of network body is determined by block width w, network depth d_i, bottleneck ratio b_i and group widths g. Degrees of freedom at stage 'i' are number of blocks d in each stage, block width w and other block parameters such as stride, padding and so on.

Other models are obtained by refining the design space by adding more constraints on the above parameters. Design space is refined keeping the following things in mind :

  • Simplify structure of design space.
  • Improve the interpretability of design space.
  • Maintain Design space complexity.
  • Maintain model diversity in design space.

AnyNetX

XBlock

  • Uses XBlocks within each block of the network
  • Degrees of freedom in AnyNetX is 16
  • Each network has 4 stages
  • Each stage has 4 parameters (network depth di, block width wi, bottleneck ratio bi, group width gi)
  • bi ∈ {1,2,4}
  • gi ∈ {1,2,3,...,32}
  • wi <= 1024
  • di <= 16

AnyNetX(A)

AnyNetX(A) is same as the above AnyNetX

AnyNetX(B)

In this design space,

  • bottleneck ratio bi is fixed for all stages.
  • performance of models in AnyNetX(B) space is almost equal to AnyNetX(A) in average and best case senarios
  • bi <= 2 seemes to work best.

AnyNetX(C)

In this design space,

  • Shared group width gi for all stages.
  • AnyNetX(C) has 6 fewer degrees of freedom compared to AnyNetX(A)
  • gi > 1 seems to work best

AnyNetX(D)

In AnyNetX(D) design space, authors observed that good networks have increasing stage widths w(i+1) > wi

AnyNetX(E)

In AnyNetX(E) design space, it was observed that as stage widths wi increases, depth di likewise tend to increase except for the last stage.

RegNet

Please refer to Section 3.3 in paper.

Training

Import any of the following variants of RegNet using

from regnet import regnetx_002 as RegNet002
from regnet import Xblock, Yblock # required if you want to use YBlock instead of Xblock. Refer to paper for more details on YBlock

RegNet variants available are:

  • regnetx_002
  • regnetx_004
  • regnetx_006
  • regnetx_008
  • regnetx_016
  • regnetx_032
  • regnetx_040
  • regnetx_064
  • regnetx_080
  • regnetx_120
  • regnetx_160
  • regnetx_320

Import TrainingConfig and Trainer Classes from regnet and use them to train the model as follows

from regnet import TrainingConfig, Trainer

model = RegNet002(block=Xblock, num_classes=10)

training_config = TrainingConfig(max_epochs=10, batch_size=128, learning_rate=3e-4, weight_decay=5e-4, ckpt_path="./regnet.pt")
trainer = Trainer(model = model, train_dataset=train_dataset, test_dataset=test_dataset, config=training_config)
trainer.train()

Note : you need not use TrainingConfig and Trainer classes if you want to write your own training loops. Just importing the respective models would suffice.

TODO

  • Test if model trains when using YBlocks
  • Implement model checkpointing for every 'x' epochs

References

[1] https://github.com/signatrix/regnet

[2] https://github.com/d-li14/regnet.pytorch

@InProceedings{Radosavovic2020,
  title = {Designing Network Design Spaces},
  author = {Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Doll{\'a}r},
  booktitle = {CVPR},
  year = {2020}
}

LICENSE

MIT

Owner
Vishal R
Computer Science Student at PES University.
Vishal R
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
PyTorch implementation of UNet++ (Nested U-Net).

PyTorch implementation of UNet++ (Nested U-Net) This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architect

4ui_iurz1 642 Jan 04, 2023
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

SuMa++: Efficient LiDAR-based Semantic SLAM This repository contains the implementation of SuMa++, which generates semantic maps only using three-dime

Photogrammetry & Robotics Bonn 701 Dec 30, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 07, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan

Kimmy 561 Dec 01, 2022
SAAVN - Sound Adversarial Audio-Visual Navigation,ICLR2022 (In PyTorch)

SAAVN SAAVN Code release for paper "Sound Adversarial Audio-Visual Navigation,IC

YinfengYu 10 Aug 30, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022