Distance-Ratio-Based Formulation for Metric Learning

Overview

Distance-Ratio-Based Formulation for Metric Learning

Environment

Preparing datasets

CUB

  • Change directory to /filelists/CUB
  • run source ./download_CUB.sh

One might need to manually download CUB data from http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz.

mini-ImageNet

  • Change directory to /filelists/miniImagenet
  • run source ./download_miniImagenet.sh (WARNING: This would download the 155G ImageNet dataset.)

To only download 'miniImageNet dataset' and not the whole 155G ImageNet dataset:

(Download 'csv' files from the codes in /filelists/miniImagenet/download_miniImagenet.sh. Then, do the following.)

First, download zip file from https://drive.google.com/file/d/0B3Irx3uQNoBMQ1FlNXJsZUdYWEE/view (It is from https://github.com/oscarknagg/few-shot). After unzipping the zip file at /filelists/miniImagenet, run a script /filelists/miniImagenet/prepare_mini_imagenet.py which is modified from https://github.com/oscarknagg/few-shot/blob/master/scripts/prepare_mini_imagenet.py. Then, run /filelists/miniImagenet/write_miniImagenet_filelist2.py.

Train

Run python ./train.py --dataset [DATASETNAME] --model [BACKBONENAME] --method [METHODNAME] --train_aug [--OPTIONARG]

To also save training analyses results, for example, run python ./train.py --dataset miniImagenet --model Conv4 --method protonet_S --train_aug --n_shot 5 --train_n_way 5 --test_n_way 5 > record/miniImagenet_Conv4_proto_S_5s5w.txt

train_models.ipynb contains codes for our experiments.

Save features

Save the extracted feature before the classifaction layer to increase test speed.

For instance, run python ./save_features.py --dataset miniImagenet --model Conv4 --method protonet_S --train_aug --n_shot 5 --train_n_way 5

Test

For example, run python ./test.py --dataset miniImagenet --model Conv4 --method protonet_S --train_aug --n_shot 5 --train_n_way 5 --test_n_way 5

Analyze training

Run /record/analyze_training_1shot.ipynb and /record/analyze_training_5shot.ipynb to analyze training results (norm ratio, con-alpha ratio, div-alpha ratio, and con-div ratio)

Results

The test results will be recorded in ./record/results.txt

Visual comparison of softmax-based and distance-ratio-based (DR) formulation

The following images visualize confidence scores of red class when the three points are the representing points of red, green, and blue classes.

Softmax-based formulation DR formulation

References and licence

Our repository (a set of codes) is forked from an original repository (https://github.com/wyharveychen/CloserLookFewShot) and codes are under the same licence (LICENSE.txt) as the original repository except for the following.

/filelists/miniImagenet/prepare_mini_imagenet.py file is modifed from https://github.com/oscarknagg/few-shot. It is under a different licence in /filelists/miniImagenet/prepare_mini_imagenet.LICENSE

Copyright and licence notes (including the copyright note in /data/additional_transforms.py) are from the original repositories (https://github.com/wyharveychen/CloserLookFewShot and https://github.com/oscarknagg/few-shot).

Modifications

List of modified or added files (or folders) compared to the original repository (https://github.com/wyharveychen/CloserLookFewShot):

io_utils.py backbone.py configs.py train.py save_features.py test.py utils.py README.md train_models.ipynb /methods/__init__.py /methods/protonet_S.py /methods/meta_template.py /methods/protonet_DR.py /methods/softmax_1nn.py /methods/DR_1nn.py /models/ /filelists/miniImagenet/prepare_mini_imagenet.py /filelists/miniImagenet/prepare_mini_imagenet.LICENSE /filelists/miniImagenet/write_miniImagenet_filelist2.py /record/ /record/preprocessed/ /record/analyze_training_1shot.ipynb /record/analyze_training_5shot.ipynb

My (Hyeongji Kim) main contributions (modifications) are in /methods/meta_template.py, /methods/protonet_DR.py, /methods/softmax_1nn.py, /methods/DR_1nn.py, /record/analyze_training_1shot.ipynb, and /record/analyze_training_5shot.ipynb.

Owner
Hyeongji Kim
Hyeongji Kim
Easy to use Python camera interface for NVIDIA Jetson

JetCam JetCam is an easy to use Python camera interface for NVIDIA Jetson. Works with various USB and CSI cameras using Jetson's Accelerated GStreamer

NVIDIA AI IOT 358 Jan 02, 2023
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
Augmented Traffic Control: A tool to simulate network conditions

Augmented Traffic Control Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/. Overview Augmented

Meta Archive 4.3k Jan 08, 2023
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
Pytorch implementation of MLP-Mixer with loading pre-trained models.

MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p

Qiushi Yang 2 Sep 29, 2022
Demonstrational Session git repo for H SAF User Workshop (28/1)

5th H SAF User Workshop The 5th H SAF User Workshop supported by EUMeTrain will be held in online in January 24-28 2022. This repository contains inst

H SAF 4 Aug 04, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Unsupervised Attributed Multiplex Network Embedding (AAAI 2020)

Unsupervised Attributed Multiplex Network Embedding (DMGI) Overview Nodes in a multiplex network are connected by multiple types of relations. However

Chanyoung Park 114 Dec 06, 2022
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023