[email protected]) | PythonRepo" /> [email protected]) | PythonRepo">

This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

Overview

GP-VAE

This repository provides datasets and code for preprocessing, training and testing models for the paper:

Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors
Wanyu Du, Jianqiao Zhao, Liwei Wang and Yangfeng Ji
ACL 2022 6th Workshop on Structured Prediction for NLP

image

Installation

The following command installs all necessary packages:

pip install -r requirements.txt

The project was tested using Python 3.6.6.

Datasets

  1. Twitter URL includes trn/val/tst.tsv, which has the following format in each line:
source_sentence \t reference_sentence 
  1. GYAFC has two sub-domains em and fr, please request and download the data from the original paper here.

Models

Training

Train the LSTM-based variational encoder-decoder with GP priors:

cd models/pg/
python main.py --task train --data_file ../../data/twitter_url \
			   --model_type gp_full --kernel_v 65.0 --kernel_r 0.0001

where --data_file indicates the data path for the training data,
--model_type indicates which prior to use, including copynet/normal/gp_full,
--kernel_v and --kernel_r specifies the hyper-parameters for the kernel of GP prior.

Train the transformer-based variational encoder-decoder with GP priors:

cd models/t5/
python t5_gpvae.py --task train --dataset twitter_url \
    			   --kernel_v 512.0 --kernel_r 0.001 

where --data_file indicates the data path for the training data,
--kernel_v and --kernel_r specifies the hyper-parameters for the kernel of GP prior.

Inference

Test the LSTM-based variational encoder-decoder with GP priors:

cd models/pg/
python main.py --task decode --data_file ../../data/twitter_url \
			   --model_type gp_full --kernel_v 65.0 --kernel_r 0.0001 \
			   --decode_from sample \
			   --model_file /path/to/best/checkpoint

where --data_file indicates the data path for the testing data,
--model_type indicates which prior to use, including copynet/normal/gp_full,
--kernel_v and --kernel_r specifies the hyper-parameters for the kernel of GP prior,
--decode_from indicates generating results conditioning on z_mean or randomly sampled z, including mean/sample.

Test the transformer-based variational encoder-decoder with GP priors:

cd models/t5/
python t5_gpvae.py --task eval --dataset twitter_url \
    			   --kernel_v 512.0 --kernel_r 0.001 \
    			   --from_mean \
    			   --timestamp '2021-02-14-04-57-04' \
    			   --ckpt '30000' # load best checkpoint

where --data_file indicates the data path for the testing data,
--kernel_v and --kernel_r specifies the hyper-parameters for the kernel of GP prior,
--from_mean indicates whether to generate results conditioning on z_mean or randomly sampled z,
--timestamp and --ckpt indicate the file path for the best checkpoint.

Citation

If you find this work useful for your research, please cite our paper:

Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors

@inproceedings{du2022gpvae,
    title = "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors",
    author = "Du, Wanyu and Zhao, Jianqiao and Wang, Liwei and Ji, Yangfeng",
    booktitle = "Proceedings of the 6th Workshop on Structured Prediction for NLP (SPNLP 2022)",
    year = "2022",
    publisher = "Association for Computational Linguistics",
}
Collection of Docker images for ML/DL and video processing projects

Collection of Docker images for ML/DL and video processing projects. Overview of images Three types of images differ by tag postfix: base: Python with

OSAI 87 Nov 22, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation This repository is the implementation of DynaTune paper. This folder

4 Nov 02, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 08, 2023
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021