This repository contains implementations of all Machine Learning Algorithms from scratch in Python. Mathematics required for ML and many projects have also been included.

Overview

👏 Pre- requisites to Machine Learning

                                                                                                                       Key :-
1️⃣ Python Basics                                                                                                      🔴 Not Done Yet 
    a. Python basics :- variables, list, sets, tuples, loops, functions, lambda functions, dictionary, input methods   rest are completed
    b. Python Oops
    c. File and Error Handling 
    d. Iteration Protocol and Generators
    
2️⃣ Data Acquisition
    a. Data Acquisition using Beautiful Soup 
    b. Data Acquisition using Web APIs
    
3️⃣ Python Libraries :-
    a. Numpy
    b. Matplotlib
    c. Seaborn
    d. Pandas
   🔴Plotly
    
4️⃣ Feature Selection and Extraction
    a.Feature Selection - Chi2 test, RandomForest Classifier
    b.Feature Extraction - Principal Component Analysis

💯 Basics of Machine Learning

1️⃣ Basic
    ✅Types of ML
    ✅Challenges in ML
    ✅Overfitting and Underfitting
    🔴Testing and Validation
    🔴Cross Validation
    🔴Grid Search
    🔴Random Search
    🔴Confusion Matrix
    🔴Precision, Recall ], F1 Score
    🔴ROC-AUC Curve
 
 2️⃣ Predictive Modelling
   🔴Introduction to Predictive Modelling
   🔴Model in Analytics
   🔴Bussiness Problem and Prediction Model
   🔴Phases of Predictive Modelling
   🔴Data Exploration for Modelling
   🔴Data and Patterns
   🔴Identifying Missing Data
   🔴Outlier Detection
   🔴Z-Score
   🔴IQR
   🔴Percentile

🔥 Machine-Learning

1️⃣ K- Nearest Neighbour:-
       - Theory
       - Implementation
       
2️⃣ Linear Regression
       - What is Linear Regression
       - What is gradient descent
       - Implementation of gradient descent
       - Importance of Learning Rate
       - Types of Gradient Descent
       - Making predictions on data set
       - Contour and Surface Plots
       - Visualizing Loss function and Gradient Descent
       🔴 Polynomial Regression
       🔴Regularization
       🔴Ridge Regression
       🔴Lasso Regression
       🔴Elastic Net and Early Stopping 
       - Multivariate Linear Regression on boston housing dataset
       - Optimization of Multivariate Linear Regression 
       - Using Scikit Learn for Linear Regression  
       - Closed Form Solution
       - LOWESS - Locally Weighted Regression
       - Maximum Likelihood Estimation
       - Project - Air Pollution Regression
      
 3️⃣ Logistic Regression
      - Hypothesis function
      - Log Loss
      - Proof of Log loss by MLE
      - Gradient Descent Update rule for Logistic Regression
      - Gradient Descent Implementation of Logistic Regression
      🔴Multiclass Classification
      - Sk-Learn Implementation of Logistic Regression on chemical classification dataset.
      
4️⃣ Natural Language Processing 
      - Bag of Words Pipeline 
      - Tokenization and Stopword Removal
      - Regex based Tokenization
      - Stemming & Lemmatization
      - Constructing Vocab
      - Vectorization with Stopwords Removal
      - Bag of Words Model- Unigram, Bigram, Trigram, n- gram
      - TF-IDF Normalization     
      
5️⃣ Naive Bayes
      - Bayes Theorem Formula 
      - Bayes Theorem - Spam or not
      - Bayes Theorem - Disease or not
      - Mushroom Classification
      - Text Classification
      - Laplace Smoothing
      - Multivariate Bernoulli Naive Bayes
      - Multivariate Event Model Naive Bayes
      - Multivariate Bernoulli Naive Bayes vs Multivariate Event Model Naive Bayes
      - Gaussian Naive Bayes
      🔴 Project on Naive Bayes
      
6️⃣ Decision Tree 
      - Entropy
      - Information Gain
      - Process Kaggle Titanic Dataset 
      - Implementation of Information Gain
      - Implementation of Decision Tree
      - Making Predictions
      - Decision Trees using Sci-kit Learn
     
          
 7️⃣ Support Vector Machine 
      - SVM Implementation in Python
      🔴Different Types of Kernel
      🔴Project on SVC
      🔴Project on SVR
      🔴Project on SVC
  
 8️⃣ Principal Component Analysis
     🔴 PCA in Python 
     🔴 PCA Project
     🔴 Fail Case of PCA (Swiss Roll)
     
 9️⃣ K- Means
      🔴 Implentation in Python
      - Implementation using Libraries
      - K-Means ++
      - DBSCAN 
      🔴 Project
 
 🔟 Ensemble Methods and Random Forests
     🔴Ensemble and Voting Classifiers
     🔴Bagging and Pasting
     🔴Random Forest
     🔴Extra Tree
     🔴 Ada Boost
     🔴 Gradient Boosting
     🔴 Gradient Boosting with Sklearn
     🔴 Stacking Ensemble Learning
  
  1️⃣1️⃣  Unsupervised Learning
     🔴 Hierarchical Clustering
     🔴 DBSCAN 
     🔴 BIRCH 
     🔴 Mean - Shift
     🔴 Affinity Propagation
     🔴 Anomaly Detection
     🔴Spectral Clustering
     🔴 Gaussian Mixture
     🔴 Bayesian Gaussian Mixture Models

💯 Mathematics required for Machine Learning

    1️⃣ Statistics:
        a. Measures of central tendency – mean, median, mode
        b. measures of dispersion – mean deviation, standard deviation, quartile deviation, skewness and kurtosis.
        c. Correlation coefficient, regression, least squares principles of curve fitting
        
    2️⃣ Probability:
        a. Introduction, finite sample spaces, conditional probability and independence, Bayes’ theorem, one dimensional random variable, mean, variance.
        
    3️⃣ Linear Algebra :- scalars,vectors,matrices,tensors.transpose,broadcasting,matrix multiplication, hadamard product,norms,determinants, solving linear equations

📚 Handwritten notes with proper implementation and Mathematics Derivations of each algorithm from scratch

   ✅ KNN 
   ✅ Linear Regressio
   ✅ Logistic Regression 
   ✅ Feature Selection and Extraction
   ✅ Naive Bayes

🙌 Projects :-

    🔅 Movie Recommendation System
    🔅 Diabetes Classification 
    🔅 Handwriting Recognition
    🔅 Linkedin Webscraping
    🔅 Air Pollution Regression
Owner
Vanshika Mishra
I am a Data Science Enthusiast. Research and open source piques my interests
Vanshika Mishra
Automatic detection and classification of Covid severity degree in LUS (lung ultrasound) scans

Final-Project Final project in the Technion, Biomedical faculty, by Mor Ventura, Dekel Brav & Omri Magen. Subproject 1: Automatic Detection of LUS Cha

Mor Ventura 1 Dec 18, 2021
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
The Fundamental Clustering Problems Suite (FCPS) summaries 54 state-of-the-art clustering algorithms, common cluster challenges and estimations of the number of clusters as well as the testing for cluster tendency.

FCPS Fundamental Clustering Problems Suite The package provides over sixty state-of-the-art clustering algorithms for unsupervised machine learning pu

9 Nov 27, 2022
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022
Creating Artificial Life with Reinforcement Learning

Although Evolutionary Algorithms have shown to result in interesting behavior, they focus on learning across generations whereas behavior could also be learned during ones lifetime.

Maarten Grootendorst 49 Dec 21, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022

Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022