Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Overview

Graph-to-3D

This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arxiv
Helisa Dhamo*, Fabian Manhardt*, Nassir Navab, Federico Tombari
ICCV 2021

We address the novel problem of fully-learned 3D scene generation and manipulation from scene graphs, in which a user can specify in the nodes or edges of a semantic graph what they wish to see in the 3D scene.

If you find this code useful in your research, please cite

@inproceedings{graph2scene2021,
  title={Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs},
  author={Dhamo, Helisa and Manhardt, Fabian and Navab, Nassir and Tombari, Federico},
  booktitle={IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Setup

We have tested it on Ubuntu 16.04 with Python 3.7 and PyTorch 1.2.0

Code

# clone this repository and move there
git clone https://github.com/he-dhamo/graphto3d.git
cd graphto3d
# create a conda environment and install the requirments
conda create --name g2s_env python=3.7 --file requirements.txt 
conda activate g2s_env          # activate virtual environment
# install pytorch and cuda version as tested in our work
conda install pytorch==1.2.0 cudatoolkit=10.0 -c pytorch
# more pip installations
pip install tensorboardx graphviz plyfile open3d==0.9.0.0 open3d-python==0.7.0.0 
# Set python path to current project
export PYTHONPATH="$PWD"

To evaluate shape diversity, you will need to setup the Chamfer distance. Download the extension folder from the AtlasNetv2 repo and install it following their instructions:

cd ./extension
python setup.py install

To download our checkpoints for our trained models and the Atlasnet weights used to obtain shape features:

cd ./experiments
chmod +x ./download_checkpoints.sh && ./download_checkpoints.sh

Dataset

Download the 3RScan dataset from their official site. You will need to download the following files using their script:

python download.py -o /path/to/3RScan/ --type semseg.v2.json
python download.py -o /path/to/3RScan/ --type labels.instances.annotated.v2.ply

Additionally, download the metadata for 3RScan:

cd ./GT
chmod +x ./download_metadata_3rscan.sh && ./download_metadata_3rscan.sh

Download the 3DSSG data files to the ./GT folder:

chmod +x ./download_3dssg.sh && ./download_3dssg.sh

We use the scene splits with up to 9 objects per scene from the 3DSSG paper. The relationships here are preprocessed to avoid the two-sided annotation for spatial relationships, as these can lead to paradoxes in the manipulation task. Finally, you will need our directed aligned 3D bounding boxes introduced in our project page. The following scripts downloads these data.

chmod +x ./download_postproc_3dssg.sh && ./download_postproc_3dssg.sh

Run the transform_ply.py script from this repo to obtain 3RScan scans in the correct alignment:

cd ..
python scripts/transform_ply.py --data_path /path/to/3RScan

Training

To train our main model with shared shape and layout embedding run:

python scripts/train_vaegan.py --network_type shared --exp ./experiments/shared_model --dataset_3RScan ../3RScan_v2/data/ --path2atlas ./experiments/atlasnet/model_70.pth --residual True

To run the variant with separate (disentangled) layout and shape features:

python scripts/train_vaegan.py --network_type dis --exp ./experiments/separate_baseline --dataset_3RScan ../3RScan_v2/data/ --path2atlas ./experiments/atlasnet/model_70.pth --residual True

For the 3D-SLN baseline run:

python scripts/train_vaegan.py --network_type sln --exp ./experiments/sln_baseline --dataset_3RScan ../3RScan_v2/data/ --path2atlas ./experiments/atlasnet/model_70.pth --residual False --with_manipulator False --with_changes False --weight_D_box 0 --with_shape_disc False

One relevant parameter is --with_feats. If set to true, this tries to read shape features directly instead of reading point clouds and feading them in AtlasNet to obtain the feature. If features are not yet to be found, it generates them during the first epoch, and reads these stored features instead of points in the next epochs. This saves a lot of time at training.

Each training experiment generates an args.json configuration file that can be used to read the right parameters during evaluation.

Evaluation

To evaluate the models run

python scripts/evaluate_vaegan.py --dataset_3RScan ../3RScan_v2/data/ --exp ./experiments/final_checkpoints/shared --with_points False --with_feats True --epoch 100 --path2atlas ./experiments/atlasnet/model_70.pth --evaluate_diversity False

Set --evaluate_diversity to True if you want to compute diversity. This takes a while, so it's disabled by default. To run the 3D-SLN baseline, or the variant with separate layout and shape features, simply provide the right experiment folder in --exp.

Acknowledgements

This repository contains code parts that are based on 3D-SLN and AtlasNet. We thank the authors for making their code available.

Owner
Helisa Dhamo
Helisa Dhamo
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
Unofficial Implementation of Oboe (SIGCOMM'18').

Oboe-Reproduce This is the unofficial implementation of the paper "Oboe: Auto-tuning video ABR algorithms to network conditions, Zahaib Akhtar, Yun Se

Tianchi Huang 13 Nov 04, 2022
A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory

Awesome Machine Learning Jupyter Notebooks for Google Colaboratory A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook

Carlos Toxtli 245 Jan 01, 2023
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.

Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I

5 Nov 21, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
This program writes christmas wish programmatically. It is using turtle as a pen pointer draw christmas trees and stars.

Introduction This is a simple program is written in python and turtle library. The objective of this program is to wish merry Christmas programmatical

Gunarakulan Gunaretnam 1 Dec 25, 2021
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020