ICLR2021 (Under Review)

Related tags

Deep LearningSelfTime
Overview

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning

This repository contains the official PyTorch implementation of:

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning.

motivation

Abstract: Self-supervised learning achieves superior performance in many domains by extracting useful representations from the unlabeled data. However, most of traditional self-supervised methods mainly focus on exploring the inter-sample structure while less efforts have been concentrated on the underlying intra-temporal structure, which is important for time series data. In this paper, we present SelfTime: a general Self-supervised Time series representation learning framework, by exploring the inter-sample relation and intra-temporal relation of time series to learn the underlying structure feature on the unlabeled time series. Specifically, we first generate the inter-sample relation by sampling positive and negative samples of a given anchor sample, and intra-temporal relation by sampling time pieces from this anchor. Then, based on the sampled relation, a shared feature extraction backbone combined with two separate relation reasoning heads are employed to quantify the relationships of the sample pairs for inter-sample relation reasoning, and the relationships of the time piece pairs for intra-temporal relation reasoning, respectively. Finally, the useful representations of time series are extracted from the backbone under the supervision of relation reasoning heads. Experimental results on multiple real-world time series datasets for time series classification task demonstrate the effectiveness of the proposed method.

SelfTime

Requirements

  • Python 3.6 or 3.7
  • PyTorch version 1.4

Run Model Training and Evaluation

Self-supervised Pretraining

InterSample:

python train_ssl.py --dataset_name CricketX --model_name InterSample

IntraTemporal:

python train_ssl.py --dataset_name CricketX --model_name IntraTemporal

SelfTime:

python train_ssl.py --dataset_name CricketX --model_name SelfTime

Linear Evaluation

InterSample:

python test_linear.py --dataset_name CricketX --model_name InterSample

IntraTemporal:

python test_linear.py --dataset_name CricketX --model_name IntraTemporal

SelfTime:

python test_linear.py --dataset_name CricketX --model_name SelfTime

Supervised Training and Test

python train_test_supervised.py --dataset_name CricketX --model_name SupCE

Check Results

After runing model training and evaluation, the checkpoints of the trained model are saved in the local [ckpt] directory, the training logs are saved in the local [log] directory, and all experimental results are saved in the local [results] directory.

Cite

If you make use of this code in your own work, please cite our paper.

@inproceedings{
anonymous2021selfsupervised,
title={Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning},
author={Haoyi Fan, Fengbin Zhang, Yue Gao},
booktitle={Submitted to International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=qFQTP00Q0kp},
note={under review}
}
Owner
Haoyi Fan
Ph.D student at HRBUST
Haoyi Fan
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
Multimodal Temporal Context Network (MTCN)

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Philipjhc 53 Dec 27, 2022
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Advantage Actor Critic (A2C): jax + flax implementation

Advantage Actor Critic (A2C): jax + flax implementation Current version supports only environments with continious action spaces and was tested on muj

Andrey 3 Jan 23, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022