Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Overview

Open In Colab

Update on 2021.09

Here is the package torchsubband I wrote for subband decomposition.

https://github.com/haoheliu/torchsubband

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet)

ranking

Introduction

This repo contains the pretrained Music Source Separation models I submitted to the 2021 ISMIR MSS Challenge. We only participate the Leaderboard A, so these models are solely trained on MUSDB18HQ.

You can use this repo to separate 'bass', 'drums', 'vocals', and 'other' tracks from a music mixture. Also we provides our vocals and other models' training pipline. You can train your own model easily.

As is shown in the following picture, in leaderboard A, we(ByteMSS) achieved the 2nd on Vocal score and 5th on average score. For bass and drums separation, we directly use the open-sourced demucs model. It's trained with only MUSDB18HQ data, thus is qualified for LeaderBoard A.

ranking

1. Usage (For MSS)

1.1 Prepare running environment

First you need to clone this repo:

git clone https://github.com/haoheliu/2021-ISMIR-MSS-Challenge-CWS-PResUNet.git

Install the required packages

cd 2021-ISMIR-MSS-Challenge-CWS-PResUNet
pip3 install --upgrade virtualenv==16.7.9 # this version virtualenv support the --no-site-packages option
virtualenv --no-site-packages env_mss # create new environment
source env_mss/bin/activate # activate environment
pip3 install -r requirements.txt # install requirements

You'd better have wget and unzip command installed so that the scripts can automatically download pretrained models and unzip them.

1.2 Use pretrained model

To use the pretrained model to conduct music source separation. You can run the following demos. If it's the first time you run this program, it will automatically download the pretrained models.

python3 main -i <input-wav-file-path/folder> 
             -o <output-path-dir> 
             -s <sources-to-separate>  # vocals bass drums other (all four stems by default)
             --cuda  # if wanna use GPU, use this flag
             # --wiener  # if wanna use wiener filtering, use this flag. 
             # '--wiener' can take effect only when separation of all four tracks are done or you separate four tracks at the same time.
             
# <input-wav-file-path> is the .wav file to be separated or a folder containing all .wav mixtures.
# <output-path-dir> is the folder to store the separation results 
# python3 main.py -i <input-wav-file-path> -o <output-path-dir>
# Separate a single file to four sources
python3 main.py -i example/test/zeno_sign_stereo.wav -o example/results -s vocals bass drums other
# Separate all the files in a folder
python3 main.py -i example/test/ -o example/results
# Use GPU Acceleration
python3 main.py -i example/test/zeno_sign_stereo.wav -o example/results --cuda
# Separate all the files in a folder using GPU and wiener filtering post processing (may introduce new distortions, make the results even worse.)
python3 main.py -i example/test -o example/results --cuda # --wiener

Each pretrained model in this repo take us approximately two days on 8 V100 GPUs to train.

1.3 Train new MSS models from scratch

1.3.1 How to train

For the training data:

  • If you havn't download musdb18hq, we will automatically download the dataset for you by running the following command.
  • If you have already download musdb18hq, you can put musdb18hq.zip or musdb18hq folder into the data folder and run init.sh to prepare this dataset.
source init.sh

Finally run either of these two commands to start training.

# For track 'vocals', we use a 4 subbands resunet to perform separation. 
# The input of model is mixture and its output is vocals waveform.
# Note: Batchsize is set to 16 by default. Check your hard ware configurations to avoid GPU OOM.
source models/resunet_conv8_vocals/run.sh

# For track 'other', we also use a 4 subbands resunet to perform separation.
# But for this track, we did a little modification.
# The input of model is mixture, and its output are bass, other and drums waveforms. (bass and drums are only used during training) 
# We calculate the losses for "bass","other", and "drums" these three sources together.
# Result shows that joint training is beneficial for 'other' track.
# Note: Batchsize is set to 16 by default. Check your hard ware configurations to avoid GPU OOM.
source models/resunet_joint_training_other/run.sh
  • By default, we use batchsize 8 and 8 gpus for vocal and batchsize 16 and 8 gpus for other. You can custom your own by modifying parameters in the above run.sh files.

  • Training logs will be presented in the mss_challenge_log folder. System will perform validations every two epoches.

Here we provide the result of a test run: 'source models/resunet_conv8_vocals/run.sh'.

ranking

1.3.2 Use the model you trained

To use the the vocals and the other model you trained by your own. You need to modify the following two variables in the predictor.py to the path of your models.

41 ...
42  v_model_path = <path-to-your-vocals-model>
43  o_model_path = <path-to-your-other-model>
44 ...

1.4 Model Evaluation

Since the evaluation process is slow, we separate the evaluation process out as a single task. It's conducted on the validation results generated during training.

Steps:

  1. Locate the path of the validation result. After training, you will get a validation folder inside your loging directory (mss_challenge_log by default).

  2. Determine which kind of source you wanna evaluate (bass, vocals, others or drums). Make sure its results present in the validation folder.

  3. Run eval.sh with two arguments: the source type and the validation results folder (automatic generated after training in the logging folder).

For example:

# source eval.sh <source-type> <your-validation-results-folder-after-training> 

# evaluate vocal score
source eval.sh vocals mss_challenge_log/2021-08-11-subband_four_resunet_for_vocals-vocals/version_0/validations
# evaluate bass score
source eval.sh bass mss_challenge_log/2021-08-11-subband_four_resunet_for_vocals-vocals/version_0/validations
# evaluate drums score
source eval.sh drums mss_challenge_log/2021-08-11-subband_four_resunet_for_vocals-vocals/version_0/validations
# evaluate other score
source eval.sh other mss_challenge_log/2021-08-11-subband_four_resunet_for_vocals-vocals/version_0/validations

The system will save the overall score and the score for each song in the result folder.

For faster evalution, you can adjust the parameter MAX_THREAD insides the evaluator/eval.py to determine how many threads you gonna use. It's value should fit your computer resources. You can start with MAX_THREAD=3 and then try 6, 10 or 16.

2. Usage (For customizing sound source)

This feature allows you to separate an arbitrary sound source as long as you got enough training data.

This colab demonstrates the following procedure.

Step1: Prepare running environment.

! git clone https://github.com/haoheliu/2021-ISMIR-MSS-Challenge-CWS-PResUNet.git
# MAKE SURE SOX IS INSTALLED
#!apt-get install libsox-fmt-all libsox-dev sox > /dev/null
%cd 2021-ISMIR-MSS-Challenge-CWS-PResUNet
! pip3 install -r requirements.txt

Step2: Organize your data

I assume that you have already got the following two disjoint kinds of data (there are sample datas in this repo when you clone it):

  1. the_source_you_want_to_get (for example, speech data)
  2. the_source_you_want_to_remove (for example, noise data)
  • Split and put these data into data/your_data folder:
    • train(about 90%~99%): training data (used during training)
      • the_source_you_want_to_get: put your target source (the source you'd like to separate out) audios into this folder
      • the_source_you_want_to_remove: put undesired sources audios into this folder
    • test(about 1%~10%): testing data (used during validation, every two epoches)
      • the_source_you_want_to_get
      • the_source_you_want_to_remove
  • Then run:
# Automatic parsing your data
source init_your_data.sh

Step3: Start training!

  • Use the same MSS model
source models/resunet_conv8_vocals/run.sh

This script use 8 gpus with 8 batchsize by default. You may need to modify this run.sh to fit in your machine.

  • Use a smaller model (1/8)
source models/resunet_conv1_vocals/run.sh

Log file will be automatic generated. You can check validation results during training, which update every two epoches.

Hints:

  • To perform separation on real test data, you can upload validation data as real_mixture + silent.
  • To make an epoch shorter, you can modify the parameter HOURS_FOR_A_EPOCH inside models/dataloader/loaders/individual_loader.py.

3. Reference

If you find our code useful for your research, please consider citing:

@misc{liu2021cwspresunet,
    title={CWS-PResUNet: Music Source Separation with Channel-wise Subband Phase-aware ResUNet},
    author={Haohe Liu and Qiuqiang Kong and Jiafeng Liu},
    year={2021},
    eprint={2112.04685},
    archivePrefix={arXiv},
    primaryClass={cs.SD}
}
@inproceedings{Liu2020,   
  author={Haohe Liu and Lei Xie and Jian Wu and Geng Yang},   
  title={{Channel-Wise Subband Input for Better Voice and Accompaniment Separation on High Resolution Music}},   
  year=2020,   
  booktitle={Proc. Interspeech 2020},   
  pages={1241--1245},   
  doi={10.21437/Interspeech.2020-2555},   
  url={http://dx.doi.org/10.21437/Interspeech.2020-2555}   
}.

4. Change log

2021-11-20: Update the demucs version. Now I directly use the mdx version demucs in this repo to separate bass and drums.

Owner
Leo
Speech Quality Enhancement | Music Source Separation | Speech Synthesis
Leo
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
A Python package for faster, safer, and simpler ML processes

Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

Chris Nota 5 Aug 30, 2022
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

王皓波 147 Jan 07, 2023
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022