Guide to using pre-trained large language models of source code

Overview

Large Models of Source Code

I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe how to use these.

  1. Setup
  2. Models (incl. PolyCoder)
  3. Datasets
  4. Evaluation
  5. How to cite

Getting Started

All current models were trained using the GPT NeoX toolkit. First, download a pretrained checkpoint as described below and then use this either with a Docker image or through our fork of this toolkit from source to generate code or replicate our evaluation.

Retrieving Checkpoints

Checkpoint files for training PolyCoder are hosted on this public Zenodo repository. See this section for details on currently available models. Model checkpoints range up to 6GB, which is also the amount of GPU memory they require to run (running on CPU is neither tested nor recommended). Download and untar a checkpoint file (in this case for a 2.7B parameter model trained for 150K steps) to a directory called checkpoints/, using:

mkdir checkpoints
cd checkpoints
wget https://zenodo.org/record/6363556/files/2-7B-150K.tar
tar -xvf 2-7B-150K.tar

From Source

We maintain a public fork of the NeoX repository here, which includes the (minor) changes we made to the codebase to allow for tabs & newlines in the tokenization, and also includes instructions for running the perplexity and HumanEval tasks. Note that this repository uses a forked version of the LM Evaluation Harness with the code benchmark from our work.

Building this repository should match the process for GPT-NeoX almost exactly. You may also use the Docker image mentioned next, but mounting a checkout of the latest version of this fork over the /gpt-neox directory inside the container. Once set up generate.py entrypoint (described below) for free-form code generation, or use one of the commands here to calculate perplexity and HumanEval results as in the paper.

Via Docker

A base Docker image containing a slightly modified version of the gpt-neox repository is available via DockerHub:

docker pull vhellendoorn/code-lms-neox:base

This image can be used together with a checkpoint file hosted on this public Zenodo repository. The base Docker image size is 5.4GB. Once a checkpoint has been retrieved, start the container with the following commands (substituting another GPU device index if needed):

nvidia-docker run --rm -it -e NVIDIA_VISIBLE_DEVICES=0 --shm-size=1g --ulimit memlock=-1 --mount type=bind,src=$PWD/checkpoints,dst=/gpt-neox/checkpoints vhellendoorn/code-lms-neox:base

Code Generation

The following command can be used to generate code from a prompt:

sudo ./deepy.py generate.py configs/text_generation.yml checkpoints/configs/local_setup.yml checkpoints/configs/2-7B.yml

Note: if not using the 2.7B parameter model, replace the final config file with the appropriate model size (e.g., small = 160M parameters, medium = 405M).

Once the checkpoint has been loaded, you can feed it an example such as def return1():\n """Returns 1."""\n (note the whitespace tokens) and watch it predict return 1 (and then probably a bunch of other returnX methods, depending on the sample).

The modifications to gpt-neox mentioned above center around the need to allow tabs and newlines in the prompt input. For the interactive mode, these can be added using their escaped versions (\t, \n); when using file-based input, the project will read the entire file instead of treating each line as a prompt. By default, the command below will create an interactive prompt and return relatively short outputs (256 tokens) with a sampling temperature of 0.5; this behavior can be changed in /gpt-neox/checkpoints/configs/text_generation.yml.

A lower temperature (e.g., 0.2) will produce more consistent and plausible (to the model) predictions; a higher temperature such as the default may be useful for generating and evaluating many candidates (see our paper for recommendations). For the latter setting, consider switching to the input-file mode and providing an entire snippet (without escaping whitespace) in the corresponding file

Multi-lingual Models

Several models have been trained on a large corpus of code spanning 12 programming languages. This includes a 2.7B parameter model (nick-named PolyCoder, trained for 100K and 150K steps), a 405M parameter model (100K & 150K steps) and a 160M parameter model (150K steps).

Available Models

All models are available at a public Zenodo repository, in the form of .tar files with fairly self-explanatory names (e.g., 2-7B-100K => a 2.7B parameter model trained for 100K steps). Currently available models include:

  • GPT2 - 2.7B: A 32 layer, 2,560 dimensional Transformer model, trained with a batch size of 128 sequences (256K tokens). Models available both at 100K and at 150K steps steps.
    • Note that GPT-Neox' default config for this model was modified to reduce the number of training steps (and learning rate decay steps accordingly) to 160K, down from 320K, to better match the available training resources. Hence, this model may not have reached its peak performance.
  • GPT2 - 0.4B: A 24 layer, 1,024 dimensional Transformer model based on the medium config, trained with 256K tokens per batch.
  • GPT2 - 160M: A 12 layer, 768 dimensional Transformer model based on the small config, trained with 256K tokens per batch.

Training Process

Training was done on 4 to 8 NVIDIA RTX 8000 GPUs, largely following the standard config values, except also enabling "scaled-upper-triang-masked-softmax-fusion" and "bias-gelu-fusion" for performance and slightly changing the batch size (see model details), data split (changed to 98.9%, 0.1%, 1%), initial loss scale (2^16), and print/eval intervals.

The below image shows the loss curve of the various models' training process in terms of validation loss. image

Caveats

The trained models come with a few minor known limitations:

  • This model was not trained to solve programming problems and may not perform well on a benchmark such as HumanEval. Models like Codex (powering Copilot) are pretrained on natural language, which may boost their ability to interpret NL prompts; this model only learned language from comments in code.
  • The model appears to start generating a random new file once it reaches the (predicted) end of the current one. It is possible that the end-of-document token was not properly added to the training data.
  • Whitespace is very important to the model, since no preprocessing was done on the input files. For instance, the following snippet will yield poor predictions, because in Java we would never expect an instance-method at the top-level, as is indicated by the single level of (\t) indentation of the two lines within this method:
public int getTotalWeight(List<Integer> weights) {\n\t// Sum weights in parallel.\n\treturn 

Adjusting the indentation makes it predict more reasonable continuations:

public int getTotalWeight(List<Integer> weights) {\n\t\t// Sum weights in parallel.\n\t\treturn 

The Codex model discusses controlling for this to increase usability; this may be worth doing in a future version of the model.

Datasets

249GB Multi-Lingual Corpus

This is the corpus used to train PolyCoder.

The datasets were cloned overnight on October 9-10, 2021. To mine a similar training set, see Data.

The list of file paths can be downloaded from: https://zenodo.org/record/6363556/files/index.zip. Each row in the file is the file path along with its SHA-256 hash, to ease deduplication. That is, the hashes allow checking if files from any future test set were already contained in the training set.

The data collection and filtering process is described in detail in the paper and below. The final, filtered dataset statistics are:

Language Repositories Size(GB) Files
C 10,749 55G 3,037,112
C# 9,511 21G 2,514,494
C++ 13,726 52G 4,289,506
Go 12,371 15G 1,416,789
Java 15,044 41G 5,120,129
JavaScript 25,144 22G 1,774,174
PHP 9,960 13G 1,714,058
Python 25,446 16G 1,550,208
Ruby 5,826 4.1G 674,343
Rust 4,991 3.5G 304,842
Scala 1,497 1.8G 245,100
TypeScript 12,830 9.2G 1,441,926

Data Collection & Filtering

I cloned the most popular repositories for 12 popular programming languages with at least 50 stars (stopping at ~25K per langauge) from GitHub in October 2021. For each project, each file belonging to the majority-language of that project was extracted, yielding the training set below (after cleaning). This initial, unfiltered dataset spanned 631GB and 38.9M files.

Next, similar to Codex and CodeParrot, very large (>1MB) and very short (<100 tokens) files were filtered out, reducing the dataset to 424GB. Files were then deduplicated based on a hash of their content, which reduced the number of files by another 30% or so, leaving 249GB of data and 24.1M files. No tokenization filters were applied; the model processes entire files including all comments. A code-specific vocabulary was constructed on a random 5% subset of the files above.

Evaluation

Please find detailed instructions for replicating our perplexity and HumanEval results on our public fork of the NeoX repository. This in turn leverages our extension of the LM Evaluation Harness.

Evaluating Codex

To download the test sets that we used in the paper (12 programming languages), use:

wget https://zenodo.org/record/6363556/files/unseen_test_sets.tar.gz
tar -xvzf unseen_test_sets.tar.gz

To get perplexity results on these samples using Codex' API, use:

export OPENAI_API_KEY=<YOUR OPEN AI API KEY>
python3 -u Evaluation/eval_codex_all.py --dirs Code-sampled100

Where <YOUR OPEN AI API KEY> is a private string that can be obtained by signing up for OpenAI's beta.

As of March 2022, getting an API Key is free for 3 months, and afterwards a credit card needs to be entered. However, even after entering a credit card, using our evaluation script does not lead to any costs.

Results - HumanEval

These are PolyCoder's results on the HumanEval benchmark:

Model [email protected] [email protected] [email protected]
PolyCoder (160M) 2.13% 3.35% 4.88%
PolyCoder (400M) 2.96% 5.29% 11.59%
PolyCoder (2.7B) 5.59% 9.87% 17.68%
CodeParrot (110M) 3.80% 6.57% 12.78%
CodeParrot (1.5B) 3.58% 8.03% 14.96%
GPT-Neo (125M) 0.75% 1.88% 2.97%
GPT-Neo (1.3B) 4.79% 7.47% 16.30%
GPT-Neo (2.7B) 6.41% 11.27% 21.37%
GPT-J (6B) 11.62% 15.74% 27.74%
Codex (300M) 13.17% 20.37% 36.27%
Codex (2.5B) 21.36% 35.42% 59.50%
Codex (12B) 28.81% 46.81% 72.31%

Results - Multilingual Language Modeling

These are the perplexity results of PolyCoder on the multilingual test sets:

Language Perplexity
C 2.3464
C# 2.5832
C++ 2.9189
Go 2.567
Java 2.9194
JavaScript 3.0611
PHP 3.6954
Python 3.1767
Ruby 3.9742
Rust 3.2449
Scala 3.8735
TypeScript 3.6143

A comparison with the other models is available in Figure 6 in the paper: image

Citation

A Systematic Evaluation of Large Language Models of Code

@article{xu2022systematic,
  title={A Systematic Evaluation of Large Language Models of Code},
  author={Xu, Frank F and Alon, Uri and Neubig, Graham and Hellendoorn, Vincent J},
  journal={arXiv preprint arXiv:2202.13169},
  year={2022}
}
Owner
Vincent Hellendoorn
AI4SE Researcher, Assistant Prof. at CMU
Vincent Hellendoorn
This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

Graph4AI 230 Nov 22, 2022
A Practitioner's Guide to Natural Language Processing

Learn how to process, classify, cluster, summarize, understand syntax, semantics and sentiment of text data with the power of Python! This repository contains code and datasets used in my book, Text

Dipanjan (DJ) Sarkar 1.5k Jan 03, 2023
This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 - treatments and vaccinations.

Project: Text Analysis - This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 -

1 Mar 14, 2022
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
Model for recasing and repunctuating ASR transcripts

Recasing and punctuation model based on Bert Benoit Favre 2021 This system converts a sequence of lowercase tokens without punctuation to a sequence o

Benoit Favre 88 Dec 29, 2022
A unified tokenization tool for Images, Chinese and English.

ICE Tokenizer Token id [0, 20000) are image tokens. Token id [20000, 20100) are common tokens, mainly punctuations. E.g., icetk[20000] == 'unk', ice

THUDM 42 Dec 27, 2022
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o

Hugging Face 77.3k Jan 03, 2023
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
Ongoing research training transformer language models at scale, including: BERT & GPT-2

Megatron (1 and 2) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA.

NVIDIA Corporation 3.5k Dec 30, 2022
Contains the code and data for our #ICSE2022 paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences"

CodeFill This repository contains the code for our paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Namin

Software Analytics Lab 11 Oct 31, 2022
Conversational-AI-ChatBot - Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users!

Conversational AI ChatBot Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users! In this project? Thi

Rajkumar Lakshmanamoorthy 6 Nov 30, 2022
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
Creating a chess engine using GPT-3

GPT3Chess Creating a chess engine using GPT-3 Code for my article : https://towardsdatascience.com/gpt-3-play-chess-d123a96096a9 My game (white) vs GP

19 Dec 17, 2022
Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Machel Reid 82 Dec 19, 2022
:id: A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.

Dedupe Python Library dedupe is a python library that uses machine learning to perform fuzzy matching, deduplication and entity resolution quickly on

Dedupe.io 3.6k Jan 02, 2023
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

Tao Lei 14 Dec 12, 2022
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
Extract city and country mentions from Text like GeoText without regex, but FlashText, a Aho-Corasick implementation.

flashgeotext ⚡ 🌍 Extract and count countries and cities (+their synonyms) from text, like GeoText on steroids using FlashText, a Aho-Corasick impleme

Ben 57 Dec 16, 2022
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python)

ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python) 日本語は以下に続きます (Japanese follows) English: This book is written in Japanese and primaril

Ryuichi Yamamoto 189 Dec 29, 2022