Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

Related tags

Deep Learninglasr
Overview

LASR

Installation

Build with conda

conda env create -f lasr.yml
conda activate lasr
# install softras
cd third_party/softras; python setup.py install; cd -;
# install manifold remeshing
git clone --recursive -j8 git://github.com/hjwdzh/Manifold; cd Manifold; mkdir build; cd build; cmake .. -DCMAKE_BUILD_TYPE=Release;make; cd ../../

For docker installation, please see install.md

Data preparation

Create folders to store data and training logs

mkdir log; mkdir tmp; 
Synthetic data

To render {silhouette, flow, rgb} observations of spot.

python scripts/render_syn.py
Real data (DAVIS)

First, download DAVIS 2017 trainval set and copy JPEGImages/Full-Resolution and Annotations/Full-Resolution folders of DAVIS-camel into the according folders in database.

cp ...davis-path/DAVIS/Annotations/Full-Resolution/camel/ -rf database/DAVIS/Annotations/Full-Resolution/
cp ...davis-path/DAVIS-lasr/DAVIS/JPEGImages/Full-Resolution/camel/ -rf database/DAVIS/JPEGImages/Full-Resolution/

Then download pre-trained VCN optical flow:

pip install gdown
mkdir ./lasr_vcn
gdown https://drive.google.com/uc?id=139S6pplPvMTB-_giI6V2dxpOHGqqAdHn -O ./lasr_vcn/vcn_rob.pth

Run VCN-robust to predict optical flow on DAVIS camel video:

bash preprocess/auto_gen.sh camel
Your own video

You will need to download and install detectron2 to obtain object segmentations as instructed below.

python -m pip install detectron2 -f \
  https://dl.fbaipublicfiles.com/detectron2/wheels/cu110/torch1.7/index.html

First, use any video processing tool (such as ffmpeg) to extract frames into JPEGImages/Full-Resolution/name-of-the-video.

mkdir database/DAVIS/JPEGImages/Full-Resolution/pika-tmp/
ffmpeg -ss 00:00:04 -i database/raw/IMG-7495.MOV -vf fps=10 database/DAVIS/JPEGImages/Full-Resolution/pika-tmp/%05d.jpg

Then, run pointrend to get segmentations:

cd preprocess
python mask.py pika path-to-detectron2-root; cd -

Assuming you have downloaded VCN flow in the previous step, run flow prediction:

bash preprocess/auto_gen.sh pika

Single video optimization

Synthetic spot Next, we want to optimize the shape, texture and camera parameters from image observartions. Optimizing spot takes ~20min on a single Titan Xp GPU.
bash scripts/spot3.sh

To render the optimized shape, texture and camera parameters

bash scripts/extract.sh spot3-1 10 1 26 spot3 no no
python render_vis.py --testdir log/spot3-1/ --seqname spot3 --freeze --outpath tmp/1.gif
DAVIS camel

Optimize on camel observations.

bash scripts/template.sh camel

To render optimized camel

bash scripts/render_result.sh camel
Costumized video (Pika)

Similarly, run the following steps to reconstruct pika

bash scripts/template.sh pika

To render reconstructed shape

bash scripts/render_result.sh pika
Monitor optimization

To monitor optimization, run

tensorboard --logdir log/

Example outputs

Evaluation

Run the following command to evaluate 3D shape accuracy for synthetic spot.

python scripts/eval_mesh.py --testdir log/spot3-1/ --gtdir database/DAVIS/Meshes/Full-Resolution/syn-spot3f/

Run the following command to evaluate keypoint accuracy on BADJA.

python scripts/eval_badja.py --testdir log/camel-5/ --seqname camel

Additional Notes

Other videos in DAVIS/BAJDA

Please refer to data preparation and optimization of the camel example, and modify camel to other sequence names, such as dance-twirl. We provide config files the configs folder.

Synthetic articulated objects

To render and reproduce results on articulated objects (Sec. 4.2), you will need to purchase and download 3D models here. We use blender to export animated meshes and run rendera_all.py:

python scripts/render_syn.py --outdir syn-dog-15 --nframes 15 --alpha 0.5 --model dog

Optimize on rendered observations

bash scripts/dog15.sh

To render optimized dog

bash scripts/render_result.sh dog
Batchsize

The current codebase is tested with batchsize=4. Batchsize can be modified in scripts/template.sh. Note decreasing the batchsize will improive speed but reduce the stability.

Distributed training

The current codebase supports single-node multi-gpu training with pytorch distributed data-parallel. Please modify dev and ngpu in scripts/template.sh to select devices.

Acknowledgement

The code borrows the skeleton of CMR

External repos:

External data:

Citation

To cite our paper,

@inproceedings{yang2021lasr,
  title={LASR: Learning Articulated Shape Reconstruction from a Monocular Video},
  author={Yang, Gengshan 
      and Sun, Deqing
      and Jampani, Varun
      and Vlasic, Daniel
      and Cole, Forrester
      and Chang, Huiwen
      and Ramanan, Deva
      and Freeman, William T
      and Liu, Ce},
  booktitle={CVPR},
  year={2021}
}  
Owner
Google
Google ❤️ Open Source
Google
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
Emulation and Feedback Fuzzing of Firmware with Memory Sanitization

BaseSAFE This repository contains the BaseSAFE Rust APIs, introduced by "BaseSAFE: Baseband SAnitized Fuzzing through Emulation". The example/ directo

Security in Telecommunications 138 Dec 16, 2022
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
Styled Augmented Translation

SAT Style Augmented Translation Introduction By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 dif

139 Dec 29, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
Unsupervised Attributed Multiplex Network Embedding (AAAI 2020)

Unsupervised Attributed Multiplex Network Embedding (DMGI) Overview Nodes in a multiplex network are connected by multiple types of relations. However

Chanyoung Park 114 Dec 06, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
[ICCV2021] 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds

3DVG-Transformer This repository is for the ICCV 2021 paper "3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds" Our method "3DV

22 Dec 11, 2022
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 07, 2022
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.

PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari

OCTI 160 Dec 21, 2022
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022