Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Overview

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image

This repository contains the code for the following paper:

  • R. Hu, N. Ravi, A. Berg, D. Pathak, Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image. in ICCV, 2021. (PDF)
@inproceedings{hu2021worldsheet,
  title={Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image},
  author={Hu, Ronghang and Ravi, Nikhila and Berg, Alex and Pathak, Deepak},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Project Page: https://worldsheet.github.io/

Installation

Our Worldsheet implementation is based on MMF and PyTorch3D. This repository is adapted from the MMF repository (https://github.com/facebookresearch/mmf).

This code is designed to be run on GPU, CPU training/inference is not supported.

  1. Create a new conda environment:
conda create -n worldsheet python=3.8
conda activate worldsheet
  1. Download this repository or clone with Git, and then enter the root directory of the repository git clone https://github.com/facebookresearch/worldsheet.git && cd worldsheet

  2. Install the MMF dependencies: pip install -r requirements.txt

  3. Install PyTorch3D as follows (we used v0.2.5):

# Install using conda
conda install -c pytorch3d pytorch3d=0.2.5

# Or install from GitHub directly
git clone https://github.com/facebookresearch/pytorch3d.git && cd pytorch3d
git checkout v0.2.5
rm -rf build/ **/*.so
FORCE_CUDA=1 pip install -e .
cd ..

# or pip install from github 
pip install "git+https://github.com/facebookresearch/[email protected]"
  1. Extra dependencies
pip install scikit-image

Train and evaluate on the Matterport3D and Replica datasets

In this work, we use the same Matterport3D and Replica datasets as in SynSin, based on the Habitat environment. In our codebase and config files, these two datasets are referred to as synsin_habitat (synsin_mp3d and synsin_replica) (note that here the synsin_ prefix only refers to the datasets used in SynSin; the underlying model being trained and evaluated is our Worldsheet model, not SynSin).

Extract the image frames

In our project, we extract those training, validation, and test image frames and camera matrices using the SynSin codebase for direct comparisons with SynSin and other previous work.

Please install our modified SynSin codebase from synsin_for_data_and_eval branch of this repository to extract the Matterport3D and Replica image frames:

git clone https://github.com/facebookresearch/worldsheet.git -b synsin_for_data_and_eval synsin && cd synsin

and install habitat-sim and habitat-api as additional SynSin dependencies following the official SynSin installation instructions. For convenience, we provide the corresponding versions of habitat-sim and habitat-api for SynSin in habitat-sim-for-synsin and habitat-sim-for-synsin branches of this repository.

After installing the SynSin codebase from synsin_for_data_and_eval branch, set up Matterport3D and Replica datasets following the instructions in the SynSin codebase, and run the following to save the image frames to disk (you can change MP3D_SAVE_IMAGE_DIR to a location on your machine).

# this is where Matterport3D and Replica image frames will be extracted
export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

# clone the SynSin repo from `synsin_for_data_and_eval` branch
git clone https://github.com/facebookresearch/worldsheet.git -b synsin_for_data_and_eval ../synsin
cd ../synsin

# Matterport3D train
DEBUG="" python evaluation/dump_train_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/train \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10  --images_before_reset 1000
# Matterport3D val
DEBUG="" python evaluation/dump_val_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/val \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10  --images_before_reset 200
# Matterport3D test
DEBUG="" python evaluation/dump_test_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/test \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10  --images_before_reset 200
# Replica test
DEBUG="" python evaluation/dump_test_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_replica/test \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10  --images_before_reset 200 \
     --dataset replica
# Matterport3D val with 20-degree angle change
DEBUG="" python evaluation/dump_val_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/val_jitter_angle20 \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10 --images_before_reset 200 \
     --render_ids 0 --jitter_quaternions_angle 20
# Matterport3D test with 20-degree angle change
DEBUG="" python evaluation/dump_test_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/test_jitter_angle20 \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10 --images_before_reset 200 \
     --render_ids 0 --jitter_quaternions_angle 20

cd ../worldsheet  # assuming `synsin` repo and `worldsheet` repo are under the same parent directory

Training

Run the following to perform training and evaluation. In our experiments, we use a single machine with 4 NVIDIA V100-32GB GPUs.

# set to the same path as in image frame extraction above
export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

# train the scene mesh prediction in Worldsheet
./run_mp3d_and_replica/train_mp3d.sh mp3d_nodepth_perceptual_l1laplacian

# train the inpainter with frozen scene mesh prediction
./run_mp3d_and_replica/train_mp3d.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh

Pretrained models

Instead of performing the training above, one can also directly download the pretrained models via

./run_mp3d_and_replica/download_pretrained_models.sh

and run the evaluation below.

Evaluation

The evaluation scripts below will print the performance (PSNR, SSIM, Perc-Sim) on different test data.

Evaluate on the default test sets with the same camera changes as the training data (Table 1):

# set to the same path as in image frame extraction above
export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

# Matterport3D, without inpainter (Table 1 line 6)
./run_mp3d_and_replica/eval_mp3d_test_iter.sh mp3d_nodepth_perceptual_l1laplacian 40000

# Matterport3D, full model (Table 1 line 7)
./run_mp3d_and_replica/eval_mp3d_test_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

# Replica, full model (Table 1 line 7)
./run_mp3d_and_replica/eval_replica_test_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

Evaluate the full model on 2X camera changes (Table 2):

# set to the same path as in image frame extraction above
export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

# Matterport3D, without inpainter (Table 2 line 4)
./run_mp3d_and_replica/eval_mp3d_test_jitter_angle20_iter.sh mp3d_nodepth_perceptual_l1laplacian 40000

# Matterport3D, full model (Table 2 line 5)
./run_mp3d_and_replica/eval_mp3d_test_jitter_angle20_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

# Replica, full model (Table 2 line 5)
./run_mp3d_and_replica/eval_replica_test_jitter_angle20_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

Visualization

One can visualize the model predictions using the script run_mp3d_and_replica/visualize_mp3d_val_iter.sh to visualize the Matterport3D validation set (and this script can be modified to visualize other splits). For example, run the following to visualize the predictions from the full model:

export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

./run_mp3d_and_replica/visualize_mp3d_val_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

Then, you can inspect the predictions using the notebook run_mp3d_and_replica/visualize_predictions.ipynb.

Train and evaluate on the RealEstate10K dataset

In this work, we use the same RealEstate10K dataset as in SynSin.

Setting up the RealEstate10K dataset

Please set up the dataset following the instructions in SynSin. The scripts below assumes this dataset has been downloaded to /checkpoint/ronghanghu/neural_rendering_datasets/realestate10K/RealEstate10K/frames/. You can modify its path in mmf/configs/datasets/synsin_realestate10k/defaults.yaml.

Training

Run the following to perform the training and evaluation. In our experiments, we use a single machine with 4 NVIDIA V100-32GB GPUs.

# train 33x33 mesh
./run_realestate10k/train.sh realestate10k_dscale2_lowerL1_200

# initialize 65x65 mesh from trained 33x33 mesh
python ./run_realestate10k/init_65x65_from_33x33.py \
    --input ./save/synsin_realestate10k/realestate10k_dscale2_lowerL1_200/models/model_50000.ckpt \
    --output ./save/synsin_realestate10k/realestate10k_dscale2_stride4ft_lowerL1_200/init.ckpt

# train 65x65 mesh
./run_realestate10k/train.sh realestate10k_dscale2_stride4ft_lowerL1_200

Pretrained models

Instead of performing the training above, one can also directly download the pretrained models via

./run_realestate10k/download_pretrained_models.sh

and run the evaluation below.

Evaluation

Note: as mentioned in the paper, following the evaluation protocol of SynSin on RealEstate10K, the best metrics of two separate predictions based on each view were reported for single-view methods. We follow this evaluation protocol for consistency with SynSin on RealEstate10K in Table 3. We also report averaged metrics over all predictions in the supplemental.

The script below evaluates the performance on RealEstate10K with averaged metrics over all predictions, as reported in the supplemental Table C.1:

# Evaluate 33x33 mesh (Supplemental Table C.1 line 6)
./run_realestate10k/eval_test_iter.sh realestate10k_dscale2_lowerL1_200 50000

# Evaluate 65x65 mesh (Supplemental Table C.1 line 7)
./run_realestate10k/eval_test_iter.sh realestate10k_dscale2_stride4ft_lowerL1_200 50000

To evaluate with the SynSin protocol using the best metrics of two separate predictions as in Table 3, one needs to first save the predicted novel views as PNG files, and then use the SynSin codebase for evaluation. Please install our modified SynSin codebase from synsin_for_data_and_eval branch of this repository following the Matterport3D and Replica instructions above. Then evaluate as follows:

# Save prediction PNGs for 33x33 mesh
./run_realestate10k/write_pred_pngs_test_iter.sh realestate10k_dscale2_lowerL1_200 50000

# Save prediction PNGs for 65x65 mesh
./run_realestate10k/write_pred_pngs_test_iter.sh realestate10k_dscale2_stride4ft_lowerL1_200 50000

cd ../synsin  # assuming `synsin` repo and `worldsheet` repo under the same directory

# Evaluate 33x33 mesh (Table 3 line 9)
python evaluation/evaluate_realestate10k_all.py \
    --take_every_other \
    --folder ../worldsheet/save/prediction_synsin_realestate10k/realestate10k_dscale2_lowerL1_200/50000/realestate10k_test

# Evaluate 65x65 mesh (Table 3 line 10)
python evaluation/evaluate_realestate10k_all.py \
    --take_every_other \
    --folder ../worldsheet/save/prediction_synsin_realestate10k/realestate10k_dscale2_stride4ft_lowerL1_200/50000/realestate10k_test

(The --take_every_other flag above performs best-of-two-prediction evaluation; without this flag, it should give the average-over-all-prediction results as in Supplemental Table C.1.)

Visualization

One can visualize the model's predictions using the script run_realestate10k/eval_val_iter.sh for the RealEstate10K validation set (run_realestate10k/visualize_test_iter.sh for the test set). For example, run the following to visualize the predictions from the 65x65 mesh:

./run_realestate10k/visualize_val_iter.sh realestate10k_dscale2_stride4ft_lowerL1_200 50000

Then, you can inspect the predictions using notebook run_realestate10k/visualize_predictions.ipynb.

We also provide a notebook for interactive predictions in run_realestate10k/make_interactive_videos.ipynb, where one can walk through the scene and generate a continuous video of the predicted novel views.

Wrapping sheets with external depth prediction

In Sec. 4.3 of the paper, we test the limits of wrapping a mesh sheet over a large variety of images. We provide a notebook for this analysis in external_depth/make_interactive_videos_with_midas_depth.ipynb, where one can interactively generate a continuous video of the predicted novel views.

The structure of Worldsheet codebase

Worldsheet is implemented as a MMF model. This codebase largely follows the structure of typical MMF models and datasets.

The Worldsheet model is defined under the MMF model name mesh_renderer in the following files:

  • model definition: mmf/models/mesh_renderer.py
  • mesh and rendering utilities, losses, and metrics: mmf/neural_rendering/
  • config base: mmf/configs/models/mesh_renderer/defaults.yaml

The experimental config files for the Matterport and Replica experiments are in the following files:

  • Habitat dataset definition: mmf/datasets/builders/synsin_habitat/
  • Habitat dataset config base: mmf/configs/datasets/synsin_habitat/defaults.yaml
  • experimental configs: projects/neural_rendering/configs/synsin_habitat/

The experimental config files for the RealEstate10K experiments are in the following files:

  • RealEstate10K dataset definition: mmf/datasets/builders/synsin_realestate10k/
  • RealEstate10K dataset config base: mmf/configs/datasets/synsin_realestate10k/defaults.yaml
  • experimental configs: projects/neural_rendering/configs/synsin_realestate10k/

Acknowledgements

This repository is modified from the MMF library from Facebook AI Research. A large part of the codebase has been modified from the pix2pixHD codebase. Our PSNR, SSIM, and Perc-Sim evaluation scripts are modified from the SynSin codebase and we also use SynSin for image frame extraction on Matterport3D and Replica. A part of our differentiable rendering implementation is built upon the Softmax Splatting codebase. All appropriate licenses are included in the files in which the code is used.

Licence

Worldsheet is released under the BSD License.

Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
PyTorch version implementation of DORN

DORN_PyTorch This is a PyTorch version implementation of DORN Reference H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao: Deep Ordinal Regression

Zilin.Zhang 3 Apr 27, 2022
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022