Approximate Nearest Neighbor Search for Sparse Data in Python!

Related tags

Data Analysispysparnn
Overview

PySparNN

Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).

Out of the box, PySparNN supports Cosine Distance (i.e. 1 - cosine_similarity).

PySparNN benefits:

  • Designed to be efficient on sparse data (memory & cpu).
  • Implemented leveraging existing python libraries (scipy & numpy).
  • Easily extended with other metrics: Manhattan, Euclidian, Jaccard, etc.
  • Supports incremental insertion of elements.

If your data is NOT SPARSE - please consider faiss or annoy. They use similar methods and I am a big fan of both. You should expect better performance on dense vectors from both of those projects.

The most comparable library to PySparNN is scikit-learn's LSHForest module. As of this writing, PySparNN is ~4x faster on the 20newsgroups dataset (as a sparse vector). A more robust benchmarking on sparse data is desired. Here is the comparison. Here is another comparison on the larger Enron email dataset.

Example Usage

Simple Example

import pysparnn.cluster_index as ci

import numpy as np
from scipy.sparse import csr_matrix

features = np.random.binomial(1, 0.01, size=(1000, 20000))
features = csr_matrix(features)

# build the search index!
data_to_return = range(1000)
cp = ci.MultiClusterIndex(features, data_to_return)

cp.search(features[:5], k=1, return_distance=False)
>> [[0], [1], [2], [3], [4]]

Text Example

import pysparnn.cluster_index as ci

from sklearn.feature_extraction.text import TfidfVectorizer

data = [
    'hello world',
    'oh hello there',
    'Play it',
    'Play it again Sam',
]    

tv = TfidfVectorizer()
tv.fit(data)

features_vec = tv.transform(data)

# build the search index!
cp = ci.MultiClusterIndex(features_vec, data)

# search the index with a sparse matrix
search_data = [
    'oh there',
    'Play it again Frank'
]

search_features_vec = tv.transform(search_data)

cp.search(search_features_vec, k=1, k_clusters=2, return_distance=False)
>> [['oh hello there'], ['Play it again Sam']]

Requirements

PySparNN requires numpy and scipy. Tested with numpy 1.11.2 and scipy 0.18.1.

Installation

# clone pysparnn
cd pysparnn 
pip install -r requirements.txt 
python setup.py install

How PySparNN works

Searching for a document in an collection of D documents is naively O(D) (assuming documents are constant sized).

However! we can create a tree structure where the first level is O(sqrt(D)) and each of the leaves are also O(sqrt(D)) - on average.

We randomly pick sqrt(D) candidate items to be in the top level. Then -- each document in the full list of D documents is assigned to the closest candidate in the top level.

This breaks up one O(D) search into two O(sqrt(D)) searches which is much much faster when D is big!

This generalizes to h levels. The runtime becomes: O(h * h_root(D))

Further Information

http://nlp.stanford.edu/IR-book/html/htmledition/cluster-pruning-1.html

See the CONTRIBUTING file for how to help out.

License

PySparNN is BSD-licensed. We also provide an additional patent grant.

Owner
Meta Research
Meta Research
Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather

Tuplex 791 Jan 04, 2023
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

Bell Eapen 14 Jan 02, 2023
An ETL framework + Monitoring UI/API (experimental project for learning purposes)

Fastlane An ETL framework for building pipelines, and Flask based web API/UI for monitoring pipelines. Project structure fastlane |- fastlane: (ETL fr

Dan Katz 2 Jan 06, 2022
A CLI tool to reduce the friction between data scientists by reducing git conflicts removing notebook metadata and gracefully resolving git conflicts.

databooks is a package for reducing the friction data scientists while using Jupyter notebooks, by reducing the number of git conflicts between different notebooks and assisting in the resolution of

dataroots 86 Dec 25, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures.

AptaMAT Purpose AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures. The method is based on the compa

GEC UTC 3 Nov 03, 2022
pipeline for migrating lichess data into postgresql

How Long Does It Take Ordinary People To "Get Good" At Chess? TL;DR: According to 5.5 years of data from 2.3 million players and 450 million games, mo

Joseph Wong 182 Nov 11, 2022
MoRecon - A tool for reconstructing missing frames in motion capture data.

MoRecon - A tool for reconstructing missing frames in motion capture data.

Yuki Nishidate 38 Dec 03, 2022
DaCe is a parallel programming framework that takes code in Python/NumPy and other programming languages

aCe - Data-Centric Parallel Programming Decoupling domain science from performance optimization. DaCe is a parallel programming framework that takes c

SPCL 330 Dec 30, 2022
Spectacular AI SDK fuses data from cameras and IMU sensors and outputs an accurate 6-degree-of-freedom pose of a device.

Spectacular AI SDK examples Spectacular AI SDK fuses data from cameras and IMU sensors (accelerometer and gyroscope) and outputs an accurate 6-degree-

Spectacular AI 94 Jan 04, 2023
2019 Data Science Bowl

Kaggle-2019-Data-Science-Bowl-Solution - Here i present my solution to kaggle 2019 data science bowl and how i improved it to win a silver medal in that competition.

Deepak Nandwani 1 Jan 01, 2022
A set of functions and analysis classes for solvation structure analysis

SolvationAnalysis The macroscopic behavior of a liquid is determined by its microscopic structure. For ionic systems, like batteries and many enzymes,

MDAnalysis 19 Nov 24, 2022
The repo for mlbtradetrees.com. Analyze any trade in baseball history!

The repo for mlbtradetrees.com. Analyze any trade in baseball history!

7 Nov 20, 2022
Hidden Markov Models in Python, with scikit-learn like API

hmmlearn hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and

2.7k Jan 03, 2023
A Python package for modular causal inference analysis and model evaluations

Causal Inference 360 A Python package for inferring causal effects from observational data. Description Causal inference analysis enables estimating t

International Business Machines 506 Dec 19, 2022
Pipeline and Dataset helpers for complex algorithm evaluation.

tpcp - Tiny Pipelines for Complex Problems A generic way to build object-oriented datasets and algorithm pipelines and tools to evaluate them pip inst

Machine Learning and Data Analytics Lab FAU 3 Dec 07, 2022
TextDescriptives - A Python library for calculating a large variety of statistics from text

A Python library for calculating a large variety of statistics from text(s) using spaCy v.3 pipeline components and extensions. TextDescriptives can be used to calculate several descriptive statistic

150 Dec 30, 2022
Show you how to integrate Zeppelin with Airflow

Introduction This repository is to show you how to integrate Zeppelin with Airflow. The philosophy behind the ingtegration is to make the transition f

Jeff Zhang 11 Dec 30, 2022
Generate lookml for views from dbt models

dbt2looker Use dbt2looker to generate Looker view files automatically from dbt models. Features Column descriptions synced to looker Dimension for eac

lightdash 126 Dec 28, 2022
Pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).

AWS Data Wrangler Pandas on AWS Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretMana

Amazon Web Services - Labs 3.3k Jan 04, 2023