PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

Overview

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations


Project | Paper | Colab

PyTorch implementation of SDEdit: Image Synthesis and Editing with Stochastic Differential Equations.

Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, Stefano Ermon

Stanford and CMU

Overview

The key intuition of SDEdit is to "hijack" the reverse stochastic process of SDE-based generative models, as illustrated in the figure below. Given an input image for editing, such as a stroke painting or an image with color strokes, we can add a suitable amount of noise to make its artifacts undetectable, while still preserving the overall structure of the image. We then initialize the reverse SDE with this noisy input, and simulate the reverse process to obtain a denoised image of high quality. The final output is realistic while resembling the overall image structure of the input.

Getting Started

The code will automatically download pretrained SDE (VP) PyTorch models on CelebA-HQ, LSUN bedroom, and LSUN church outdoor.

Data format

We save the image and the corresponding mask in an array format [image, mask], where "image" is the image with range [0,1] in the PyTorch tensor format, "mask" is the corresponding binary mask (also the PyTorch tensor format) specifying the editing region. We provide a few examples, and functions/process_data.py will automatically download the examples to the colab_demo folder.

Stroke-based image generation

Given an input stroke painting, our goal is to generate a realistic image that shares the same structure as the input painting. SDEdit can synthesize multiple diverse outputs for each input on LSUN bedroom, LSUN church and CelebA-HQ datasets.

To generate results on LSUN datasets, please run

python main.py --exp ./runs/ --config bedroom.yml --sample -i images --npy_name lsun_bedroom1 --sample_step 3 --t 500  --ni
python main.py --exp ./runs/ --config church.yml --sample -i images --npy_name lsun_church --sample_step 3 --t 500  --ni

Stroke-based image editing

Given an input image with user strokes, we want to manipulate a natural input image based on the user's edit. SDEdit can generate image edits that are both realistic and faithful (to the user edit), while avoid introducing undesired changes.

To perform stroke-based image editing, run
python main.py --exp ./runs/  --config church.yml --sample -i images --npy_name lsun_edit --sample_step 3 --t 500  --ni

Additional results

References

If you find this repository useful for your research, please cite the following work.

@article{meng2021sdedit,
      title={SDEdit: Image Synthesis and Editing with Stochastic Differential Equations},
      author={Chenlin Meng and Yang Song and Jiaming Song and Jiajun Wu and Jun-Yan Zhu and Stefano Ermon},
      year={2021},
      journal={arXiv preprint arXiv:2108.01073},
}

This implementation is based on / inspired by:

XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

Sebastian Dittert 27 Dec 30, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022