[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

Related tags

Deep LearningDRAGON
Overview

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors

Paper
Project Website
Video

Overview

DRAGON learns to correct the bias towards head classes on a sample-by-sample basis; and fuse information from class-descriptions to improve the tail-class accuracy, as described in our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors".

Requirements

  • numpy 1.15.4
  • pandas 0.25.3
  • scipy 1.1.0
  • tensorflow 1.14.0
  • keras 2.2.5

Quick installation under Anaconda:

conda env create -f requirements.yml

Data Preparation

Datasets: CUB, SUN and AWA.
Download data.tar from here, untar it and place it under the project root directory.

DRAGON
| data
   |--CUB
   |--SUN
   |--AWA1
| attribute_expert
| dataset_handler
| fusion
...

Train Experts and Fusion Module

Reproduce results for DRAGON and its modules (Table 1 in our paper):
Training and evaluation should be according to the training protocol described in our paper (Section 5 - training):

  1. First, train each expert without the hold-out set (partial training set) by executing the following commands:

    • CUB:
      # Visual-Expert training
      PYTHONPATH="./" python visual_expert/main.py --base_train_dir=./checkpoints/CUB --dataset_name=CUB --transfer_task=DRAGON --train_dist=dragon --data_dir=data --batch_size=64 --max_epochs=100 --initial_learning_rate=0.0003 --l2=0.005
      # Attribute-Expert training 
      PYTHONPATH="./" python attribute_expert/main.py --base_train_dir=./checkpoints/CUB --dataset_name=CUB --transfer_task=DRAGON --data_dir=data --train_dist=dragon --batch_size=64 --max_epochs=100 --initial_learning_rate=0.001 --LG_beta=1e-7 --LG_lambda=0.0001 --SG_gain=3 --SG_psi=0.01 --SG_num_K=-1
      
    • SUN:
      # Visual-Expert training
      PYTHONPATH="./" python visual_expert/main.py --base_train_dir=./checkpoints/SUN --dataset_name=SUN --transfer_task=DRAGON --train_dist=dragon --data_dir=data --batch_size=64 --max_epochs=100 --initial_learning_rate=0.0001 --l2=0.01
      # Attribute-Expert training 
      PYTHONPATH="./" python attribute_expert/main.py --base_train_dir=./checkpoints/SUN --dataset_name=SUN --transfer_task=DRAGON --data_dir=data --train_dist=dragon --batch_size=64 --max_epochs=100 --initial_learning_rate=0.001 --LG_beta=1e-6 --LG_lambda=0.001 --SG_gain=10 --SG_psi=0.01 --SG_num_K=-1
      
    • AWA:
      # Visual-Expert training
      PYTHONPATH="./" python visual_expert/main.py --base_train_dir=./checkpoints/AWA1 --dataset_name=AWA1 --transfer_task=DRAGON --train_dist=dragon --data_dir=data --batch_size=64 --max_epochs=100 --initial_learning_rate=0.0003 --l2=0.1
      # Attribute-Expert training 
      PYTHONPATH="./" python attribute_expert/main.py --base_train_dir=./checkpoints/AWA1 --dataset_name=AWA1 --transfer_task=DRAGON --data_dir=data --train_dist=dragon --batch_size=64 --max_epochs=100 --initial_learning_rate=0.001 --LG_beta=0.001 --LG_lambda=0.001 --SG_gain=1 --SG_psi=0.01 --SG_num_K=-1
      
  2. Then, re-train each expert, with the hold-out set (full train set) by executing above commands with the --test_mode flag as a parameter.

  3. Rename Visual-lr=0.0003_l2=0.005 to Visual and LAGO-lr=0.001_beta=1e-07_lambda=0.0001_gain=3.0_psi=0.01 to LAGO (this is essential since the FusionModule finds trained experts by their names, without extensions).

  4. Train the fusion-module on partially trained experts (models from step 1) by running the following commands:

    • CUB:
      PYTHONPATH="./" python fusion/main.py --base_train_dir=./checkpoints/CUB --dataset_name=CUB --data_dir=data --initial_learning_rate=0.005 --batch_size=64 --max_epochs=50 --sort_preds=1 --freeze_experts=1 --nparams=2
      
    • SUN:
      PYTHONPATH="./" python fusion/main.py --base_train_dir=./checkpoints/SUN --dataset_name=SUN --data_dir=data --initial_learning_rate=0.0005 --batch_size=64 --max_epochs=50 --sort_preds=1 --freeze_experts=1 --nparams=4
      
    • AWA:
      PYTHONPATH="./" python fusion/main.py --base_train_dir=./checkpoints/AWA1 --dataset_name=AWA1 --data_dir=data --initial_learning_rate=0.005 --batch_size=64 --max_epochs=50 --sort_preds=1 --freeze_experts=1 --nparams=4
      
  5. Finally, evaluate the fusion-module with fully-trained experts (models from step 2), by executing step 4 commands with the --test_mode flag as a parameter.

Pre-trained Models and Checkpoints

Download checkpoints.tar from here, untar it and place it under the project root directory.

checkpoints
  |--CUB
      |--Visual
      |--LAGO
      |--Dual2ParametricRescale-lr=0.005_freeze=1_sort=1_topk=-1_f=2_s=(2, 2)
  |--SUN
      |--Visual
      |--LAGO
      |--Dual4ParametricRescale-lr=0.0005_freeze=1_sort=1_topk=-1_f=2_s=(2, 2)
  |--AWA1
      |--Visual
      |--LAGO
      |--Dual4ParametricRescale-lr=0.005_freeze=1_sort=1_topk=-1_f=2_s=(2, 2)

Cite Our Paper

If you find our paper and repo useful, please cite:

@InProceedings{samuel2020longtail,
  author    = {Samuel, Dvir and Atzmon, Yuval and Chechik, Gal},
  title     = {From Generalized Zero-Shot Learning to Long-Tail With Class Descriptors},
  booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
  year      = {2021}}
Owner
Dvir Samuel
Dvir Samuel
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
Roger Labbe 13k Dec 29, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Joseph Lee 7 Dec 25, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021