The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Overview

Watermark-Robustness-Toolbox - Official PyTorch Implementation

contact Python 3.6 PyTorch 1.3.1 cuDNN 10.1.2 Website shields.io GPLv3 license

This repository contains the official PyTorch implementation of the following paper to appear at IEEE Security and Privacy 2022:

SoK: How Robust is Deep Neural Network Image Classification Watermarking?
Nils Lukas, Edward Jiang, Xinda Li, Florian Kerschbaum
https://arxiv.org/abs/2108.04974

Abstract: Deep Neural Network (DNN) watermarking is a method for provenance verification of DNN models. Watermarking should be robust against watermark removal attacks that derive a surrogate model that evades provenance verification. Many watermarking schemes that claim robustness have been proposed, but their robustness is only validated in isolation against a relatively small set of attacks. There is no systematic, empirical evaluation of these claims against a common, comprehensive set of removal attacks. This uncertainty about a watermarking scheme's robustness causes difficulty to trust their deployment in practice. In this paper, we evaluate whether recently proposed watermarking schemes that claim robustness are robust against a large set of removal attacks. We survey methods from the literature that (i) are known removal attacks, (ii) derive surrogate models but have not been evaluated as removal attacks, and (iii) novel removal attacks. Weight shifting, transfer learning and smooth retraining are novel removal attacks adapted to the DNN watermarking schemes surveyed in this paper. We propose taxonomies for watermarking schemes and removal attacks. Our empirical evaluation includes an ablation study over sets of parameters for each attack and watermarking scheme on the image classification datasets CIFAR-10 and ImageNet. Surprisingly, our study shows that none of the surveyed watermarking schemes is robust in practice. We find that schemes fail to withstand adaptive attacks and known methods for deriving surrogate models that have not been evaluated as removal attacks. This points to intrinsic flaws in how robustness is currently evaluated. Our evaluation includes a discussion of the runtime of each attack to underpin their practical relevance. While none of the schemes is robust against all attacks, none of the attacks removes all watermarks. We show that attacks can be combined and find combined attacks that remove all watermarks. We show that watermarking schemes need to be evaluated against a more extensive set of removal attacks with a more realistic adversary model. Our source code and a complete dataset of evaluation results will be made publicly available, which allows to independently verify our conclusions.

Features

All watermarking schemes and removal attacks are configured for the image classification datasets CIFAR-10 (32x32 pixels, 10 classes) and ImageNet (224x224 pixels, 1k classes). We implemented the following watermarking schemes, sorted by their categories:

.. and the following removal attacks, sorted by their categories:

Get Started

At this point, the Watermark-Robustness-Toolbox project is not available as a standalone pip package, but we are working on allowing an installation via pip. We describe a manual installation and usage. First, install all dependencies via pip.

$ pip install -r requirements.txt

The following four main scripts provide the entire toolbox's functionality:

  • train.py: Pre-trains an unmarked neural network.
  • embed.py: Embeds a watermark into a pre-trained neural network.
  • steal.py: Performs a removal attack against a watermarked neural network.
  • decision_threshold.py: Computes the decision threshold for a watermarking scheme.

We use the mlconfig library to pass configuration hyperparameters to each script. Configuration files used in our paper for CIFAR-10 and ImageNet can be found in the configs/ directory. Configuration files store all hyperparameters needed to reproduce an experiment.

Step 1: Pre-train a Model on CIFAR-10

$ python train.py --config configs/cifar10/train_configs/resnet.yaml

This creates an outputs directory and saves a model file at outputs/cifar10/null_models/resnet/.

Step 2: Embed an Adi Watermark

$ python embed.py --wm_config configs/cifar10/wm_configs/adi.yaml \
                  --filename outputs/cifar10/null_models/resnet/best.pth

This embeds an Adi watermark into the pre-trained model from 'Example 1' and saves (i) the watermarked model and (ii) all data to read the watermark under outputs/cifar10/wm/adi/00000_adi/.

Step 3: Attempt to Remove a Watermark

$ python steal.py --attack_config configs/cifar10/attack_configs/ftal.yaml \
                  --wm_dir outputs/cifar10/wm/adi/00000_adi/

This runs the Fine-Tuning (FTAL) removal attack against the watermarked model and creates a surrogate model stored under outputs/cifar10/attacks/ftal/. The directory also contains human-readable debug files, such as the surrogate model's watermark and test accuracies.

Datasets

Our toolbox currently implements custom data loaders (class WRTDataLoader) for the following datasets.

  • CIFAR-10
  • ImageNet (needs manual download)
  • Omniglot (needs manual download)
  • Open Images (needs manual download)

Documentation

We are actively working on documenting the parameters of each watermarking scheme and removal attack. At this point, we can only refer to the method's source code (at wrt/defenses/ and wrt/attacks/). Soon we will host a complete documentation of all parameters, so stay tuned!

Contribute

We encourage authors of watermarking schemes or removal attacks to implement their methods in the Watermark-Robustness-Toolbox to make them publicly accessible in a unified framework. Our aim is to improve reproducibility which makes it easier to evaluate a scheme's robustness. Any contributions or suggestions for improvements are welcome and greatly appreciated. This toolbox is maintained as part of a university project by graduate students.

Reference

The codebase has been based off an early version of the Adversarial-Robustness-Tooblox.

Cite our paper

@InProceedings{lukas2022watermarkingsok,
  title={SoK: How Robust is Deep Neural Network Image Classification Watermarking?}, 
  author={Lukas, Nils and Jiang, Edward and Li, Xinda and Kerschbaum, Florian},
  year={2022},
  booktitle={IEEE Symposium on Security and Privacy}
}
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose

WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose Yijun Zhou and James Gregson - BMVC2020 Abstract: We present an end-to-end head-pos

368 Dec 26, 2022
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs

PhyCRNet Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs Paper link: [ArXiv] By: Pu Ren, Chengping Rao, Yang

Pu Ren 11 Aug 23, 2022
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
Scene-Text-Detection-and-Recognition (Pytorch)

Scene-Text-Detection-and-Recognition (Pytorch) Competition URL: https://tbrain.t

Gi-Luen Huang 9 Jan 02, 2023
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Collie do

ShopRunner 96 Dec 29, 2022
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022