AI-based, context-driven network device ranking

Related tags

Deep Learningbatea
Overview

Python package

logo

Batea

A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets.

Batea is a context-driven network device ranking framework based on the anomaly detection family of machine learning algorithms. The goal of Batea is to allow security teams to automatically filter interesting network assets in large networks using nmap scan reports. We call those Gold Nuggets.

For more information about Gold Nuggeting and the science behind Batea, check out our whitepaper here

You can try Batea on your nmap scan data without downloading the software, using Batea Live: https://batea.delvesecurity.com/

How it works

Batea works by constructing a numerical representation (numpy) of all devices from your nmap reports (XML) and then applying anomaly detection methods to uncover the gold nuggets. It is easily extendable by adding specific features, or interesting characteristics, to the numerical representation of the network elements.

The numerical representation of the network is constructed using features, which are inspired by the expertise of the security community. The features act as elements of intuition, and the unsupervised anomaly detection methods allow the context of the network asset, or the total description of the network, to be used as the central building block of the ranking algorithm. The exact algorithm used is Isolation Forest (https://en.wikipedia.org/wiki/Isolation_forest)

Machine learning models are the heart of Batea. Models are algorithms trained on the whole dataset and used to predict a score on the same (and other) data points (network devices). Batea also allows for model persistence. That is, you can re-use pretrained models and export models trained on large datasets for further use.

Usage

# Complete info
$ sudo nmap -A 192.168.0.0/16 -oX output.xml

# Partial info
$ sudo nmap -O -sV 192.168.0.0/16 -oX output.xml


$ batea -v output.xml

Installation

$ git clone [email protected]:delvelabs/batea.git
$ cd batea
$ python3 setup.py sdist
$ pip3 install -r requirements.txt
$ pip3 install -e .

Developers Installation

$ git clone [email protected]:delvelabs/batea.git
$ cd batea
$ python3 -m venv batea/
$ source batea/bin/activate
$ python3 setup.py sdist
$ pip3 install -r requirements-dev.txt
$ pip3 install -e .
$ pytest

Example usage

# simple use (output top 5 gold nuggets with default format)
$ batea nmap_report.xml

# Output top 3
$ batea -n 3 nmap_report.xml

# Output all assets
$ batea -A nmap_report.xml

# Using multiple input files
$ batea -A nmap_report1.xml nmap_report2.xml

# Using wildcards (default xsl)
$ batea ./nmap*.xml
$ batea -f csv ./assets*.csv

# You can use batea on pretrained models and export trained models.

# Training, output and dumping model for persistence
$ batea -D mymodel.batea nmap_report.xml

# Using pretrained model
$ batea -L mymodel.batea nmap_report.xml

# Using preformatted csv along with xml files
$ batea -x nmap_report.xml -c portscan_data.csv

# Adjust verbosity
$ batea -vv nmap_report.xml

How to add a feature

Batea works by assigning numerical features to every host in the report (or series of report). Hosts are python objects derived from the nmap report. They consist of the following list of attributes: [ipv4, hostname, os_info, ports] where ports is a list of ports objects. Each port has the following list of attributes : [port, protocol, state, service, software, version, cpe, scripts], all defaulting to None.

Features are objects inherited from the FeatureBase class that instantiate a specific _transform method. This method always takes the list of all hosts as input and returns a lambda function that maps each host to a numpy column of numeric values (host order is conserved). The column is then appended to the matrix representation of the report. Features must output correct numerical values (floats or integers) and nothing else.

Most feature transformations are implemented using a simple lambda function. Just make sure to default a numeric value to every host for model compatibility.

Ex:

class CustomInterestingPorts(FeatureBase):
    def __init__(self):
        super().__init__(name="some_custom_interesting_ports")

    def _transform(self, hosts):
      """This method takes a list of hosts and returns a function that counts the number
      of host ports member from a predefined list of "interesting" ports, defaulting to 0.

      Parameters
      ----------
      hosts : list
          The list of all hosts

      Returns
      -------
      f : lambda function
          Counts the number of ports in the defined list.
      """
        member_ports = [21, 22, 25, 8080, 8081, 1234]
        f = lambda host: len([port for port in host.ports if port.port in member_ports])
        return f

You can then add the feature to the report by using the NmapReport.add_feature method in batea/__init__.py

from .features.basic_features import CustomInterestingPorts

def build_report():
    report = NmapReport()
    #[...]
    report.add_feature(CustomInterestingPorts())

    return report

Using precomputed tabular data (CSV)

It is possible to use preprocessed data to train the model or for prediction. The data has to be indexed by (ipv4, port) with one unique combination per row. The type of data should be close to what you expect from the XML version of an nmap report. A column has to use one of the following names, but you don't have to use all of them. The parser defaults to null values if a column is absent.

  'ipv4',
  'hostname',
  'os_name',
  'port',
  'state',
  'protocol',
  'service',
  'software_banner',
  'version',
  'cpe',
  'other_info'

Example:

ipv4,hostname,os_name,port,state,protocol,service,software_banner
10.251.53.100,internal.delvesecurity.com,Linux,110,open,tcp,rpcbind,"program version   port/proto  service100000  2,3,4        111/tcp  rpcbind100000  2,3,4    "
10.251.53.100,internal.delvesecurity.com,Linux,111,open,tcp,rpcbind,
10.251.53.188,serious.delvesecurity.com,Linux,6000,open,tcp,X11,"X11Probe: CentOS"

Outputing numerical representation

For the data scientist in you, or just for fun and profit, you can output the numerical matrix along with the score column instead of the regular output. This can be useful for further data analysis and debug purpose.

$ batea -oM network_matrix nmap_report.xml
Owner
Secureworks Taegis VDR
Automatically identify and prioritize vulnerabilities for intelligent remediation.
Secureworks Taegis VDR
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive

TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str

VITA lab at EPFL 39 Dec 25, 2022
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 07, 2022
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red

Taehoon Kim 2.6k Dec 31, 2022