Deep Distributed Control of Port-Hamiltonian Systems

Overview

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH)

This repository is associated to the paper [1] and it contains:

  1. The full paper manuscript.
  2. The code to reproduce numerical experiments.

Summary

By embracing the compositional properties of port-Hamiltonian (pH) systems, we characterize deep Hamiltonian control policies with built-in closed-loop stability guarantees — irrespective of the interconnection topology and the chosen neural network parameters. Furthermore, our setup enables leveraging recent results on well-behaved neural ODEs to prevent the phenomenon of vanishing gradients by design [2]. The numerical experiments described in the report and available in this repository corroborate the dependability of the proposed DeepDisCoPH architecture, while matching the performance of general neural network policies.

Report

The report as well as the corresponding Appendices can be found in the docs folder.

Installation of DeepDisCoPH

The following lines indicates how to install the Deep Distributed Control for Port-Hamiltonian Systems (DeepDisCoPH) package.

git clone https://github.com/DecodEPFL/DeepDisCoPH.git

cd DeepDisCoPH

python setup.py install

Basic usage

To train distributed controllers for the 12 robots in the xy-plane:

./run.py --model [MODEL]

where available values for MODEL are distributed_HDNN, distributed_HDNN_TI and distributed_MLP.

To plot the norms of the backward sensitivity matrices (BSMs) when training a distributed H-DNN as the previous example, run:

./bsm.py --layer [LAYER]

where available values for LAYER are 1,2,...,100. If LAYER=-1, then it is set to N. The LAYER parameter indicates the layer number at which we consider the loss function is evaluated.

Examples: formation control with collision avoidance

The following gifs show the trajectories of the robots before and after the training of a distributed H-DNN controller. The goal is to reach the target positions within T = 5 seconds while avoiding collisions.

robot_trajectories_before_training robot_trajectories_after_training_a_distributed_HDNN_controller

Training performed for t in [0,5]. Trajectories shown for t in [0,6], highlighting that robots stay close to the desired position when the time horizon is extended (grey background).

Early stopping of the training

We verify that DeepDisCoPH controllers ensure closed-loop stability by design even during exploration. We train the DeepDisCoPH controller for 25%, 50% and 75% of the total number of iterations and report the results in the following gifs.

robot_trajectories_25_training robot_trajectories_50_training robot_trajectories_75_training

Training performed for t in [0,5]. Trajectories shown for t in [0,15]. The extended horizon, i.e. when t in [5,15], is shown with grey background. Partially trained distributed controllers exhibit suboptimal behavior, but never compromise closed-loop stability.

References

[1] Luca Furieri, Clara L. Galimberti, Muhammad Zakwan and Giancarlo Ferrrari Trecate. "Distributed neural network control with dependability guarantees: a compositional port-Hamiltonian approach", under review.

[2] Clara L. Galimberti, Luca Furieri, Liang Xu and Giancarlo Ferrrari Trecate. "Hamiltonian Deep Neural Networks Guaranteeing Non-vanishing Gradients by Design," arXiv:2105.13205, 2021.

Owner
Dependable Control and Decision group - EPFL
Dependable Control and Decision group - EPFL
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Convert openmmlab (not only mmdetection) series model to tensorrt

MMDet to TensorRT This project aims to convert the mmdetection model to TensorRT model end2end. Focus on object detection for now. Mask support is exp

JinTian 4 Dec 17, 2021