[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

Overview

TubeDETR: Spatio-Temporal Video Grounding with Transformers

WebsiteSTVG DemoPaper

PWC PWC PWC

This repository provides the code for our paper. This includes:

  • Software setup, data downloading and preprocessing instructions for the VidSTG, HC-STVG1 and HC-STVG2.0 datasets
  • Training scripts and pretrained checkpoints
  • Evaluation scripts and demo

Setup

Download FFMPEG and add it to the PATH environment variable. The code was tested with version ffmpeg-4.2.2-amd64-static. Then create a conda environment and install the requirements with the following commands:

conda create -n tubedetr_env python=3.8
conda activate tubedetr_env
pip install -r requirements.txt

Data Downloading

Setup the paths where you are going to download videos and annotations in the config json files.

VidSTG: Download VidOR videos and annotations from the VidOR dataset providers. Then download the VidSTG annotations from the VidSTG dataset providers. The vidstg_vid_path folder should contain a folder video containing the unzipped video folders. The vidstg_ann_path folder should contain both VidOR and VidSTG annotations.

HC-STVG: Download HC-STVG1 and HC-STVG2.0 videos and annotations from the HC-STVG dataset providers. The hcstvg_vid_path folder should contain a folder video containing the unzipped video folders. The hcstvg_ann_path folder should contain both HC-STVG1 and HC-STVG2.0 annotations.

Data Preprocessing

To preprocess annotation files, run:

python preproc/preproc_vidstg.py
python preproc/preproc_hcstvg.py
python preproc/preproc_hcstvgv2.py

Training

Download pretrained RoBERTa tokenizer and model weights in the TRANSFORMERS_CACHE folder. Download pretrained ResNet-101 model weights in the TORCH_HOME folder. Download MDETR pretrained model weights with ResNet-101 backbone in the current folder.

VidSTG To train on VidSTG, run:

python -m torch.distributed.launch --nproc_per_node=NUM_GPUS --use_env main.py --ema \
--load=pretrained_resnet101_checkpoint.pth --combine_datasets=vidstg --combine_datasets_val=vidstg \
--dataset_config config/vidstg.json --output-dir=OUTPUT_DIR

HC-STVG2.0 To train on HC-STVG2.0, run:

python -m torch.distributed.launch --nproc_per_node=NUM_GPUS --use_env main.py --ema \
--load=pretrained_resnet101_checkpoint.pth --combine_datasets=hcstvg --combine_datasets_val=hcstvg \
--v2 --dataset_config config/hcstvg.json --epochs=20 --output-dir=OUTPUT_DIR

HC-STVG1 To train on HC-STVG1, run:

python -m torch.distributed.launch --nproc_per_node=NUM_GPUS --use_env main.py --ema \
--load=pretrained_resnet101_checkpoint.pth --combine_datasets=hcstvg --combine_datasets_val=hcstvg \
--dataset_config config/hcstvg.json --epochs=40 --eval_skip=40 --output-dir=OUTPUT_DIR

Baselines

  • To remove time encoding, add --no_time_embed.
  • To remove the temporal self-attention in the space-time decoder, add --no_tsa.
  • To train from ImageNet initialization, pass an empty string to the argument --load and add --sted_loss_coef=5 --lr=2e-5 --text_encoder_lr=2e-5 --epochs=20 --lr_drop=20 for VidSTG or --epochs=60 --lr_drop=60 for HC-STVG1.
  • To train with a randomly initalized temporal self-attention, add --rd_init_tsa.
  • To train with a different spatial resolution (e.g. res=352) or temporal stride (e.g. k=4), add --resolution=224 or --stride=5.
  • To train with the slow-only variant, add --no_fast.
  • To train with alternative designs for the fast branch, add --fast=VARIANT.

Available Checkpoints

Training data parameters url size
MDETR init + VidSTG k=4 res=352 Drive 3.0GB
MDETR init + VidSTG k=2 res=224 Drive 3.0GB
ImageNet init + VidSTG k=4 res=352 Drive 3.0GB
MDETR init + HC-STVG2.0 k=4 res=352 Drive 3.0GB
MDETR init + HC-STVG2.0 k=2 res=224 Drive 3.0GB
MDETR init + HC-STVG1 k=4 res=352 Drive 3.0GB
ImageNet init + HC-STVG1 k=4 res=352 Drive 3.0GB

Evaluation

For evaluation only, simply run the same commands as for training with --resume=CHECKPOINT --eval. For this to be done on the test set, add --test (in this case predictions and attention weights are also saved).

Spatio-Temporal Video Grounding Demo

You can also use a pretrained model to infer a spatio-temporal tube on a video of your choice (VIDEO_PATH with potential START and END timestamps) given the natural language query of your choice (CAPTION) with the following command:

python demo_stvg.py --load=CHECKPOINT --caption_example CAPTION --video_example VIDEO_PATH --start_example=START --end_example=END --output-dir OUTPUT_PATH

Note that we also host an online demo at this link, the code of which is available at server_stvg.py and server_stvg.html.

Acknowledgements

This codebase is built on the MDETR codebase. The code for video spatial data augmentation is inspired by torch_videovision.

Citation

If you found this work useful, consider giving this repository a star and citing our paper as followed:

@inproceedings{yang2022tubedetr,
title={TubeDETR: Spatio-Temporal Video Grounding with Transformers},
author={Yang, Antoine and Miech, Antoine and Sivic, Josef and Laptev, Ivan and Schmid, Cordelia},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2022}}
Owner
Antoine Yang
PhD Student in Computer Vision at Inria Paris
Antoine Yang
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
Everything's Talkin': Pareidolia Face Reenactment (CVPR2021)

Everything's Talkin': Pareidolia Face Reenactment (CVPR2021) Linsen Song, Wayne Wu, Chaoyou Fu, Chen Qian, Chen Change Loy, and Ran He [Paper], [Video

71 Dec 21, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Nick Sharp 247 Dec 28, 2022
Only valid pull requests will be allowed. Use python only and readme changes will not be accepted.

❌ This repo is excluded from hacktoberfest This repo is for python beginners and contains lot of beginner python projects for practice. You can also s

Prajjwal Pathak 50 Dec 28, 2022
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

✔️ Linux ✔️ OS X ❌ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This

Graphistry 107 Jan 02, 2023
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022