Convert scikit-learn models to PyTorch modules

Related tags

Deep Learningsk2torch
Overview

sk2torch

sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript.

Problems solved by this project:

  1. scikit-learn cannot perform inference on a GPU. Models like SVMs have a lot to gain from fast GPU primitives, and converting the models to PyTorch gives immediate access to these primitives.
  2. While scikit-learn supports serialization through pickle, saved models are not reproducible across versions of the library. On the other hand, TorchScript provides a convenient, safe way to save a model with its corresponding implementation. The resulting models can be loaded anywhere that PyTorch is installed, even without importing sk2torch.
  3. While certain models like SVMs and linear classifiers are theoretically end-to-end differentiable, scikit-learn provides no mechanism to compute gradients through trained models. PyTorch provides this functionality mostly for free.

See Usage for a high-level example of using the library. See How it works to see which modules are supported.

For fun, here's a vector field produced by differentiating the probability predictions of a two-class SVM (produced by this script):

A vector field quiver plot with two modes

Usage

First, train a model with scikit-learn as usual:

from sklearn.linear_model import SGDClassifier
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

x, y = create_some_dataset()
model = Pipeline([
    ("center", StandardScaler(with_std=False)),
    ("classify", SGDClassifier()),
])
model.fit(x, y)

Then call sk2torch.wrap on the model to create a PyTorch equivalent:

import sk2torch
import torch

torch_model = sk2torch.wrap(model)
print(torch_model.predict(torch.tensor([[1., 2., 3.]]).double()))

You can save a model with TorchScript:

import torch.jit

torch.jit.script(torch_model).save("path.pt")

# ... sk2torch need not be installed to load the model.
loaded_model = torch.jit.load("path.pt")

For a full example of training a model and using its PyTorch translation, see examples/svm_vector_field.py.

How it works

sk2torch contains PyTorch re-implementations of supported scikit-learn models. For a supported estimator X, a class TorchX in sk2torch will be able to read the attributes of X and convert them to torch.Tensor or simple Python types. TorchX subclasses torch.nn.Module and has a method for each inference API of X (e.g. predict, decision_function, etc.).

Which modules are supported? The easiest way to get an up-to-date list is via the supported_classes() function, which returns all wrap()able scikit-learn classes:

>>> import sk2torch
>>> sk2torch.supported_classes()
[<class 'sklearn.tree._classes.DecisionTreeClassifier'>, <class 'sklearn.tree._classes.DecisionTreeRegressor'>, <class 'sklearn.dummy.DummyClassifier'>, <class 'sklearn.ensemble._gb.GradientBoostingClassifier'>, <class 'sklearn.preprocessing._label.LabelBinarizer'>, <class 'sklearn.svm._classes.LinearSVC'>, <class 'sklearn.svm._classes.LinearSVR'>, <class 'sklearn.neural_network._multilayer_perceptron.MLPClassifier'>, <class 'sklearn.kernel_approximation.Nystroem'>, <class 'sklearn.pipeline.Pipeline'>, <class 'sklearn.linear_model._stochastic_gradient.SGDClassifier'>, <class 'sklearn.preprocessing._data.StandardScaler'>, <class 'sklearn.svm._classes.SVC'>, <class 'sklearn.svm._classes.NuSVC'>, <class 'sklearn.svm._classes.SVR'>, <class 'sklearn.svm._classes.NuSVR'>, <class 'sklearn.compose._target.TransformedTargetRegressor'>]

Comparison to sklearn-onnx

sklearn-onnx is an open source package for converting trained scikit-learn models into ONNX. Like sk2torch, sklearn-onnx re-implements inference functions for various models, meaning that it can also provide serialization and GPU acceleration for supported modules.

Naturally, neither library will support modules that aren't manually ported. As a result, the two libraries support different subsets of all available models/methods. For example, sk2torch supports the SVC probability prediction methods predict_proba and predict_log_prob, whereas sklearn-onnx does not.

While sklearn-onnx exports models to ONNX, sk2torch exports models to Python objects with familiar method names that can be fine-tuned, backpropagated through, and serialized in a user-friendly way. PyTorch is strictly more general than ONNX, since PyTorch models can be converted to ONNX if desired.

Owner
Alex Nichol
Web developer, math geek, and AI enthusiast.
Alex Nichol
Code for Robust Contrastive Learning against Noisy Views

Robust Contrastive Learning against Noisy Views This repository provides a PyTorch implementation of the Robust InfoNCE loss proposed in paper Robust

Ching-Yao Chuang 53 Jan 08, 2023
Realtime micro-expression recognition using OpenCV and PyTorch

Micro-expression Recognition Realtime micro-expression recognition from scratch using OpenCV and PyTorch Try it out with a webcam or video using the e

Irfan 35 Dec 05, 2022
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI

EmotionUI Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI. demo screenshot (with RealSense) required packages Python = 3.6 num

Yang Jiao 2 Dec 23, 2021
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
A simple Python configuration file operator.

A simple Python configuration file operator This project provides a common way to read configurations using config42. Installation It is possible to i

Scott Lau 2 Nov 08, 2021
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022