GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

Overview

GarmentNets

This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion. This paper has been accepted to ICCV 2021.

Overview

Cite this work

@inproceedings{chi2021garmentnets,
  title={GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion},
  author={Chi, Cheng and Song, Shuran},
  booktitle={The IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Datasets

  1. GarmentNets Dataset (GarmentNets training and evaluation)

  2. GarmentNets Simulation Dataset (raw Blender simluation data to generate the GarmentNets Dataset)

  3. CLOTH3D Dataset (cloth meshes in a canonical pose)

The GarmentNets Dataset contains point clouds before and after gripping simulation with point-to-point correspondance, as well as the winding number field ($128^3$ volume).

The GarmentNets Simulation Dataset contains the raw vertecies, RGBD images and per-pixel UV from Blender simulation and rendering of CLOTH3D dataset. Each cloth instance in CLOTH3D is simulated 21 times with different random gripping points.

Both datasets are stored using Zarr format.

Pretrained Models

GarmentNets Pretrained Models

GarmentNets are trained in 2 stages:

  1. PointNet++ canoninicalization network
  2. Winding number field and warp field prediction network

The checkpoints for 2 stages x 6 categories (12 in total) are all included. For evaluation, the checkpoints in the garmentnets_checkpoints/pipeline_checkpoints directory should be used.

Usage

Installation

A conda environment.yml for python=3.9, pytorch=1.9.0, cudatoolkit=11.1 is provided.

conda env create --file environment.yml

Alternatively, you can directly executive following commands:

conda install pytorch torchvision cudatoolkit=11.1 pytorch-geometric pytorch-scatter wandb pytorch-lightning igl hydra-core scipy scikit-image matplotlib zarr numcodecs tqdm dask numba -c pytorch -c nvidia -c rusty1s -c conda-forge

pip install potpourri3d==0.0.4

Evaluation

Assuming the project directory is ~/dev/garmentnets. Assuming the GarmentNets Dataset has been extracted to /data/garmentnets_dataset.zarr and GarmentNets Pretrained Models has been extracted to /data/garmentnets_checkpoints .

Generate prediction Zarr with

(garmentnets)$ python predict.py datamodule.zarr_path=
   
    /data/garmentnets_dataset.zarr/Dress main.checkpoint_path=
    
     /data/garmentnets_checkpoints/pipeline_checkpoints/Dress_pipeline.ckpt

    
   

Note that the dataset zarr_path and checkpoitn_path must belong to the same category (Dress in this case).

Hydra should automatically create a run directory such as /outputs/2021-07-31/01-43-33 . To generate evaluation metrics, execute:

(garmentnets)$ python eval.py main.prediction_output_dir=
   
    /outputs/2021-07-31/01-43-33

   

The all_metrics_agg.csv and summary.json should show up in the Hydra generated directory for this run.

Training

As mentioned above, GarmentNets are trained in 2 stages. Using a single Nvidia RTX 2080Ti, training stage 1 will take roughly a week and training stage 2 can usually be done overnight.

To retrain stage 2 with a pre-trained stage 1 checkpoint:

(garmentnets)$ python train_pipeline.py datamodule.zarr_path=
   
    /data/garmentnets_dataset.zarr pointnet2_model.checkpoint_path=
    
     /data/garmentnets_checkpoints/pointnet2_checkpoints/Dress_pointnet2.ckpt

    
   

To train stage 1 from scratch:

(garmentnets)$ python train_pointnet2.py datamodule.zarr_path=
   
    /data/garmentnets_dataset.zarr

   
Owner
Columbia Artificial Intelligence and Robotics Lab
Columbia Artificial Intelligence and Robotics Lab
ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

Zongdai 107 Dec 20, 2022
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Hongwen Zhang 450 Dec 28, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
Yoloxkeypointsegment - An anchor-free version of YOLO, with a simpler design but better performance

Introduction 关键点版本:已完成 全景分割版本:已完成 实例分割版本:已完成 YOLOX is an anchor-free version of

23 Oct 20, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023