Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Overview

Impression-Learning-Camera-Ready

Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity," by Colin Bredenberg, Benjamin S. H. Lyo, Eero P. Simoncelli, and Cristina Savin.

Requirements

-numpy

-time

-os

-copy

-deepcopy

-re

-matplotlib.pyplot

-pickle

-scipy

For the Free Spoken Digits Dataset simulations: -librosa

For the backpropagation implementation: -pytorch (https://pytorch.org/)

Instructions

In what follows, we will summarize how to reproduce the results of our paper with the code. Though some of our results require a cluster, our primary results (training + figure generation) can be completed in ~5-10 minutes on a personal computer.

Experimental Parameters (il_exp_params.py) This file specifies the particular type of simulation to run, and selects simulation hyperparameters accordingly.

To generate Figure 1 (~5 min runtime): set mode = 'standard'. This can be run on a local computer.

To generate Figure 2: set mode = 'SNR' (Fig. 2a-c) or set mode = 'dimensionality' (Fig. 2d). This will require a cluster.

To generate Figure 3: set mode = 'switch_period'. This will require a cluster.

To generate Figure 4 (~8 min runtime): set mode = 'Vocal_Digits'. This can be run on a local computer. Running this simulation will require librosa, as well as our preprocessed dataset (See Preprocessing FSDD).

To save data after a simulation, set save = True

Running a simulation (impression_learning.py) To run a simulation, simply run impression_learning.py after setting experimental parameters appropriately.

Plotting (il_plot_generator.py) To plot data after a simulation, simply run il_plot_generator.py. We ran these files consecutively in an IDE (e.g. Spyder). To save the results of a simulation, set image_save = True, which will save images in your local directory.

Backpropagation controls: We used Pytorch to separately train our backpropagation control, which has its own experimental parameters.

Experimental Parameters (il_exp_params_bp.py): array_num determines the dimensionality of the latent space.

Running a simulation and generating plots (il_backprop.py):

To run a simulation, simply run il_backprop.py. Plots for the chosen dimensionality will automatically be produced at the end of simulation.

Preprocessing the Free Spoken Digits Dataset (FSDD) (il_fsdd_preprocessing.py) For Figure 4 we generate spectrograms from the FSDD. Generating this plot will require our preprocessed data, run on the data from the FSDD (https://github.com/Jakobovski/free-spoken-digit-dataset). To preprocess the data, set your folder path to the location of your downloaded FSDD recordings folder, and set your output path to the location of your downloaded Impression Learning code. All that remains is to run the il_fsdd_preprocessing.py file (~5 min runtime).

Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
上海交通大学全自动抢课脚本,支持准点开抢与抢课后持续捡漏两种模式。2021/06/08更新。

Welcome to Course-Bullying-in-SJTU-v3.1! 2021/6/8 紧急更新v3.1 更新说明 为了更好地保护用户隐私,将原来用户名+密码的登录方式改为微信扫二维码+cookie登录方式,不再需要配置使用pytesseract。在使用扫码登录模式时,请稍等,二维码将马

87 Sep 13, 2022
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022