The source code and dataset for the RecGURU paper (WSDM 2022)

Overview

RecGURU

About The Project

Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross-Domain Recommendation (WSDM 2022)"

Code Structure

RecGURU  
├── README.md                                 Read me file 
├── data_process                              Data processing methods
│   ├── __init__.py                           Package initialization file     
│   └── amazon_csv.py                         Code for processing the amazon data (in .csv format)
│   └── business_process.py                   Code for processing the collected data
│   └── item_frequency.py                     Calculate item frequency in each domain
│   └── run.sh                                Shell script to perform data processing  
├── GURU                                      Scripts for modeling, training, and testing 
│   ├── data                                  Dataloader package      
│     ├── __init__.py                         Package initialization file 
│     ├── data_loader.py                      Customized dataloaders 
│   └── tools                                 Tools such as loss function, evaluation metrics, etc.
│     ├── __init__.py                         Package initialization file
│     ├── lossfunction.py                     Customized loss functions
│     ├── metrics.py                          Evaluation metrics
│     ├── plot.py                             Plot function
│     ├── utils.py                            Other tools
│  ├── Transformer                            Transformer package
│     ├── __init__.py                         Package initialization 
│     ├── transformer.py                      transformer module
│  ├── AutoEnc4Rec.py                         Autoencoder based sequential recommender
│  ├── AutoEnc4Rec_cross.py                   Cross-domain recommender modules
│  ├── config_auto4rec.py                     Model configuration file
│  ├── gan_training.py                        Training methods of the GAN framework
│  ├── train_auto.py                          Main function for training and testing single-domain sequential recommender
│  ├── train_gan.py                           Main function for training and testing cross-domain sequential recommender
└── .gitignore                                gitignore file

Dataset

  1. The public datasets: Amazon view dataset at: https://nijianmo.github.io/amazon/index.html
  2. Collected datasets: https://drive.google.com/file/d/1NbP48emGPr80nL49oeDtPDR3R8YEfn4J/view
  3. Data processing:

Amazon dataset:

```shell
cd ../data_process
python amazon_csv.py   
```

Collected dataset

```shell
cd ../data_process
python business_process.py --rate 0.1  # portion of overlapping user = 0.1   
```

After data process, for each cross-domain scenario we have a dataset folder:

."a_domain"-"b_domain"
├── a_only.pickle         # users in domain a only
├── b_only.pickle         # users in domain b only
├── a.pickle              # all users in domain a
├── b.pickle              # all users in domain b
├── a_b.pickle            # overlapped users of domain a and b   

Note: see the code for processing details and make modifications accordingly.

Run

  1. Single-domain Methods:
    # SAS
    python train_auto.py --sas "True"
    # AutoRec (ours)
    python train_auto.py 
  2. Cross-Domain Methods:
    # RecGURU
    python train_gan.py --cross "True"
Owner
Chenglin Li
Chenglin Li
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022
Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini!

ConversorDeMedidas_CapuccinoGelado Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini! Requirem

Arthur Ottoni Ribeiro 48 Nov 15, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
Simple STAC Catalogs discovery tool.

STAC Catalog Discovery Simple STAC discovery tool. Just paste the STAC Catalog link and press Enter. Details STAC Discovery tool enables discovering d

Mykola Kozyr 21 Oct 19, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022