Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Overview

Call of Duty World League: Search & Destroy Outcome Predictions

CWL Image

Growing up as an avid Call of Duty player, I was always curious about what factors led to a team winning or losing a match. Was it strictly based on the number of kills each player obtained? Was it who played the objective more? Or was it something different? Finally, after years of waiting, I decided that it was time to find my answers. Coupling my love for Call of Duty and my passion for data science, I began to investigate predicting the outcome of Search & Destroy games from the Call of Duty World League's 2018 and 2019 seasons.

Utilizing Python, I created a Logistic Regression binary classification model that provided insight into the significant factors that led teams to win Search and Destroy matches. Did you know that every time a player has exactly two kills in around a team's odds of winning increase by 59%? Or that every time a team defuses the bomb, their odds of winning the match increase by 54%? What about when someone on the team commits suicide? The team's odds of winning the match decreased by a whopping 43%!

I also built an XGBoost and a Random Forest model to see how accurately I could predict a Search & Destroy match outcome. The XGBoost model was ~89% accurate when predicting Search & Destroy match outcomes on test data! This model found that one of the least important variables for predicting a team's win or loss is if the team had a sneak defuse at any point during the match. Although sneak defuses are beneficial to a team's success, it would be more impactful if players removed all enemies from the round before defusing the bomb.

Project Goals

  1. Learn about essential factors that play into a team's outcome for Search & Destroy matches
  2. See how well I can predict a team's wins and losses for Search & Destroy matches

What did I do?

I used data from 17 different CWL tournaments spanning two years. If you are curious, you can find each dataset within this Activision repository hosted here. I excluded the data from the 2017 CWL Championships tournament because this set does not have all the Search & Destroy variables that the other datasets have. The final dataset had 3,128 observations with 30 variables. In total, there are 1,564 Search & Destroy matches in this dataset. All variables are continuous; there were no categorical variables within the final data used for modeling besides the binary indicator for the match's outcome.

To reach the first goal of this project, I created a Logistic Regression model to learn about the crucial factors that can either help a team win or pull a team toward a loss. To reach the second goal of this project, I elected to use both Random Forest and XGBoost models for classification to try and find the best model possible at predicting match outcomes.

How did I do it?

Logistic Regression

After joining the data, I first needed to group the observations by each match and team, then I filtered for only Search & Destroy games. That way, we have observations for both wins and losses of only Search & Destroy matches. I used a set of 14 variables for the model development process. The variables are as follows: Deaths, Assists, Headshots, Suicides, Hits, Bomb Plants, Bomb Defuses, Bomb Sneak Defuses, Snd Firstbloods, Snd 2-kill round, Snd 3-kill round, Snd 4-kill round, 2-piece, & 3-piece. If you are curious, you can find an explanation of each variable in the entire dataset in the Activision repository linked above.

Since we are using these models to classify wins and losses correctly, I elected to use the Area Under the Receiver Operating Characteristic (AUROC) curve as a metric for determining the best model. I used AUROC because of its balance between the True Positive Rate and the False Positive Rate. I found that the Logistic Regression model with the highest AUROC value on training data had the following variables: Assists, Headshots, Suicides, Defuses, Snd 2-kill round, Snd 3-kill round, & Snd 4-kill round. This model was then used to predict test data and produced the following AUROC curve:

Logistic AUROC Graph

It is worth noting that this model was 75% accurate when predicting wins and losses on test data. Overall, I expected this model to perform worse due to the small number of variables used. Still, it seems as if these variables do an excellent job at deciphering the wins and losses in Search & Destroy matches. You can find the actual values in the confusion matrix built by this model here.

Random Forest & XGBoost

For the second goal of this project, I used both Random Forest and XGBoost classification models to see just how well we could predict the outcome of a match. Neither of these algorithms has the same assumptions as Logistic Regression, so I used the complete set of 14 variables for each technique. Without optimizing hyperparameters, I first built both models to have a baseline model for both algorithms. After this, I decided to use a grid search on the hyperparameters in each model to find the best possible tune for the data.

I found that the optimized XGBoost model had a higher AUROC value than the optimized Random Forest model on training data, so I used the XGBoost model to predict the test data. This model produced the following AUROC curve:

XGBoost AUROC Graph

As expected, this model did much better than the Logistic Regression for predicting match outcomes! This model is ~89% accurate when predicting wins and losses on test data. You can find the confusion matrix for this model here.

What did I find?

From the Logistic Regression model, I found that a team's odds of winning the entire match increase by ~5% every time someone gets a kill with a headshot and ~54% every time the bomb gets defused. A team's odds of winning also increase by 59% every time a player has exactly two kills in a round, ~115% every time a player has precisely three kills in a round, and ~121% every time a player has precisely four kills in around. I also found that a team's odds of winning the entire match decrease by 43% every time a player commits suicide and (oddly enough) 0.34% every time a player receives an assist.

I recommend that professional COD teams looking to up their Search & Destroy win percentage need to find and recruit players with a high amount of bomb defuses and many headshots in Search & Destroy games. If I were a coach, I would be looking to grab Arcitys, Zer0, Clayster, Rated, & Silly. These are five players who have a high count of headshots and defuses in Search & Destroy matches.

If you are curious to learn about the essential variables in the XGBoost model, head over here!

Owner
Brett Vogelsang
M.S. Candidate at the Institute for Advanced Analytics at NC State University.
Brett Vogelsang
🌊 River is a Python library for online machine learning.

River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition is to be the go-to library for doing machine learning on strea

OnlineML 4k Jan 03, 2023
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
Scikit-learn compatible wrapper of the Random Bits Forest program written by (Wang et al., 2016)

sklearn-compatible Random Bits Forest Scikit-learn compatible wrapper of the Random Bits Forest program written by Wang et al., 2016, available as a b

Tamas Madl 8 Jul 24, 2021
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
pymc-learn: Practical Probabilistic Machine Learning in Python

pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-

pymc-learn 196 Dec 07, 2022
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions

ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in

Computational Data Science Lab 182 Dec 31, 2022
ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Broad Institute 65 Dec 20, 2022
Crunchdao - Python API for the Crunchdao machine learning tournament

Python API for the Crunchdao machine learning tournament Interact with the Crunc

3 Jan 19, 2022
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
Software Engineer Salary Prediction

Based on 2021 stack overflow data, this machine learning web application helps one predict the salary based on years of experience, level of education and the country they work in.

Jhanvi Mimani 1 Jan 08, 2022
Datetimes for Humans™

Maya: Datetimes for Humans™ Datetimes are very frustrating to work with in Python, especially when dealing with different locales on different systems

Timo Furrer 3.4k Dec 28, 2022
A python library for Bayesian time series modeling

PyDLM Welcome to pydlm, a flexible time series modeling library for python. This library is based on the Bayesian dynamic linear model (Harrison and W

Sam 438 Dec 17, 2022
The Fuzzy Labs guide to the universe of open source MLOps

Open Source MLOps This is the Fuzzy Labs guide to the universe of free and open source MLOps tools. Contents What is MLOps, anyway? Data version contr

Fuzzy Labs 352 Dec 29, 2022
This is my implementation on the K-nearest neighbors algorithm from scratch using Python

K Nearest Neighbors (KNN) algorithm In this Machine Learning world, there are various algorithms designed for classification problems such as Logistic

sonny1902 1 Jan 08, 2022
Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices

Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and t

164 Jan 04, 2023
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform.

Zillow-Houses This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform. Pipeline is consists of 10

2 Jan 09, 2022
JMP is a Mixed Precision library for JAX.

Mixed precision training [0] is a technique that mixes the use of full and half precision floating point numbers during training to reduce the memory bandwidth requirements and improve the computatio

DeepMind 108 Dec 31, 2022