Generative Flow Networks

Related tags

Deep Learninggflownet
Overview

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation

Implementation for our paper, submitted to NeurIPS 2021 (also check this high-level blog post).

This is a minimum working version of the code used for the paper, which is extracted from the internal repository of the Mila Molecule Discovery project. Original commits are lost here, but the credit for this code goes to @bengioe, @MJ10 and @MKorablyov (see paper).

Grid experiments

Requirements for base experiments:

  • torch numpy scipy tqdm

Additional requirements for active learning experiments:

  • botorch gpytorch

Molecule experiments

Additional requirements:

  • pandas rdkit torch_geometric h5py
  • a few biochemistry programs, see mols/Programs/README

For rdkit in particular we found it to be easier to install through (mini)conda. torch_geometric has non-trivial installation instructions.

We compress the 300k molecule dataset for size. To uncompress it, run cd mols/data/; gunzip docked_mols.h5.gz.

We omit docking routines since they are part of a separate contribution still to be submitted. These are available on demand, please do reach out to [email protected] or [email protected].

Comments
  • Error: Tensors used as indices must be long, byte or bool tensors

    Error: Tensors used as indices must be long, byte or bool tensors

    Dear authors, thanks for sharing the code for this wonderful work!

    I am currently trying to run the naive gflownet training code in molecular docking setting by running python gflownet.py under the mols directory. I have unzipped the datasets and have all requirements installed. And I have successfully run the model in the toy grid environment.

    However, I got this error when I run in the mols environment:

    Exception while sampling: tensors used as indices must be long, byte or bool tensors

    And when I further look up, it seems like the problem occurs around the line 70 in model_block.py. I tried to print out the stem_block_batch_idx but it doesn't seems like could be transfered to long type directly, which is required by an index:

    tensor([[-8.4156e-02, -4.2767e-02, -7.2483e-02, -3.3011e-02, -1.1865e-02, 2.0981e-03, 1.3293e-02, -7.3515e-03, -4.1853e-02, 2.1048e-02, 3.8597e-02, -1.5558e-02, 2.1581e-02, 4.9257e-03, 9.5167e-02, 4.0965e-02, 2.0146e-02, -5.5610e-02, -3.5318e-02, -3.1394e-02, 7.2078e-02, 1.8894e-02, -3.0249e-02, 2.9740e-02, 5.6950e-02, -3.8425e-02, 2.8620e-02, 9.2052e-02, -8.5357e-03, 1.6788e-02, 7.7801e-02, -4.2119e-02, 1.3606e-02, 7.5316e-02, 4.7131e-02, -4.3429e-03, 1.4157e-04, 2.0939e-02, -2.3499e-02, -6.5888e-02, -2.8960e-02, 3.1548e-02, -9.2680e-03, 5.4192e-02, -9.6579e-03, 2.0602e-02, 1.8935e-02, 4.1228e-03, -6.3467e-02, 3.6747e-02, 1.4168e-02, -6.1473e-03, -1.9472e-02, -3.3970e-02, -5.7308e-03, -4.6021e-02, -3.8956e-02, 4.7375e-02, -8.4562e-02, -1.0087e-02, 2.0478e-02, -6.8286e-02, 5.4663e-02, -5.1468e-02, 1.2617e-02, 2.4625e-02, 5.2167e-02, 5.7779e-02, -5.7788e-02, -1.3323e-02, 1.3913e-02, -7.4439e-02, -4.0981e-02, 5.0797e-02, -5.6230e-02, -5.0963e-02, -5.5488e-02, -2.7339e-02, 1.0469e-02, 3.4695e-02, -3.2623e-02, 7.6694e-03, -5.8748e-03, 7.0495e-02, -2.2805e-02, -5.4334e-03, -2.1636e-02, 1.9597e-02, 6.2370e-02, -2.4995e-02, 1.6165e-02, -4.6878e-03, 2.9743e-02, 1.2653e-02, -5.4271e-02, 1.1247e-02, -3.8340e-03, -4.7489e-02, 1.5719e-02, 3.2552e-02, 6.0665e-02, -1.2330e-02, 2.6115e-02, -2.7376e-02, 3.4152e-02, -1.0086e-02, -2.4257e-02, 3.2202e-02, -3.2659e-02, 8.6094e-02, -3.1996e-02, 7.8751e-02, 4.5367e-02, -3.8693e-02, -3.6531e-02, 6.7311e-03, 3.2884e-02, -3.2774e-02, -3.8855e-02, 2.8814e-02, 4.3942e-02, -1.3374e-02, 3.0905e-02, -7.0064e-02, -5.7230e-03, 4.5093e-02, 3.8167e-02, -3.0602e-02, -4.0387e-02, -1.5985e-02, -9.5962e-02, -1.1354e-02, 2.0879e-02, 1.4092e-02, -3.8405e-02, 1.4337e-02, -6.0682e-02, -9.0190e-03, -5.0898e-02, -4.7344e-02, 4.1045e-02, -6.7031e-02, 8.8112e-02, 3.2149e-02, 3.7748e-02, -4.0757e-02, 1.4378e-02, -1.0749e-01, 6.1679e-02, -6.7268e-03, -2.7889e-02, -5.9315e-02, -5.5883e-02, -2.6489e-02, 7.3640e-02, 1.8273e-02, -5.2330e-02, -7.7003e-05, 6.8413e-04, -1.4364e-01, -1.9389e-02, 4.5649e-02, -4.0468e-02, -4.2819e-02, 4.5874e-02, -1.6481e-02, 1.2627e-02, -8.4941e-02, -3.7458e-02, 2.1359e-02, -9.2863e-02, -3.4932e-03, 7.1990e-02, 6.2144e-02, 8.1462e-02, -2.0569e-02, 5.9194e-02, 1.6996e-03, 8.0618e-03, 6.1753e-02, 4.1602e-02, 1.0910e-02, 2.0523e-02, -9.9781e-04, 1.9131e-02, -1.0267e-02, -9.4474e-02, -3.5725e-02, 9.9953e-03, -4.3195e-02, -7.9051e-02, -3.1881e-02, 9.2158e-03, -9.6167e-04, -2.7508e-02, 7.1478e-02, -5.4107e-02, 8.0026e-02, -1.8887e-02, 4.6941e-02, 6.5166e-02, 1.2000e-02, 3.9906e-02, -2.8206e-02, 3.7483e-02, 3.5408e-02, -2.5863e-02, 2.3528e-02, 7.1814e-03, 8.0863e-02, -1.3736e-02, -8.5978e-02, -4.1238e-02, -1.2545e-02, 5.5479e-02, 7.3487e-03, 8.9125e-02, -3.4814e-02, -4.5358e-02, 4.9893e-02, 3.5286e-02, 3.2084e-02, 5.0868e-02, 2.3549e-02, -9.2907e-02, -6.9315e-03, -1.3088e-02, 8.7066e-02, 1.1554e-02, 1.3771e-02, -1.7489e-02, -5.2921e-02, 9.2110e-03, 1.6766e-02, 4.8030e-02, 1.4481e-02, 2.9254e-03, 3.5795e-02, 1.0397e-01, -2.0675e-03, -2.9916e-02, -5.3299e-02, -2.1396e-02, -5.3189e-02, 3.2805e-02, -2.6538e-03, -2.6352e-02, -1.2823e-02, 6.1972e-02, 5.4822e-02, 4.5579e-02, -3.6638e-02, 8.1013e-03, -5.6014e-02, 1.5187e-02, -6.5561e-02]], device='cuda:0', dtype=torch.float64, grad_fn=)

    I wonder if I am running the code in the correct way. Is this index correct and if so, do you know what's happening?

    opened by wenhao-gao 3
  • About Reproducibility Issues

    About Reproducibility Issues

    Hi there,

    Thank you very much for sharing the source codes.

    For reproducibility, I modified the codes as follows,

    https://github.com/GFNOrg/gflownet/blob/831a6989d1abd5c05123ec84654fb08629d9bc38/mols/gflownet.py#L84

    ---> self.train_rng = np.random.RandomState(142857)

    as well as to add

    torch.manual_seed(142857)
    torch.cuda.manual_seed(142857)
    torch.cuda.manual_seed_all(142857)
    

    However, I encountered an issue. I ran it more than 3 times with the same random seed, but the results are totally different (although they are close). I didn't modify other parts, except for addressing package compatibility issues.

    0 [1152.62, 112.939, 23.232] 100 [460.257, 44.253, 17.728] 200 [68.114, 6.007, 8.045]

    0 [1151.024, 112.603, 24.993] 100 [471.219, 45.525, 15.964] 200 [66.349, 6.174, 4.607]

    0 [1263.066, 124.094, 22.128] 100 [467.747, 44.899, 18.76] 200 [61.992, 5.715, 4.841]

    I am wondering whether you encountered such an issue before.

    Best,

    Dong

    opened by dongqian0206 2
  • Reward signal for grid environment?

    Reward signal for grid environment?

    Hello, I'm a bit confused where this reward function comes from: https://github.com/GFNOrg/gflownet/blob/831a6989d1abd5c05123ec84654fb08629d9bc38/grid/toy_grid_dag.py#L97

    My understanding is that the reward should be as defined in the paper (https://i.samkg.dev/2233/firefox_xGnEaZVBlN.png) - are these two equivalent in some way?

    opened by SamKG 1
  • Potential bug with `FlowNetAgent.sample_many`

    Potential bug with `FlowNetAgent.sample_many`

    Hi there!

    Thanks for sharing the code and just wanted to say I've enjoyed your paper. I was reading your code and noticed that there might be a subtle bug in the grid-env dag script. I might also have read it wrong...

    https://github.com/bengioe/gflownet/blob/dddfbc522255faa5d6a76249633c94a54962cbcb/grid/toy_grid_dag.py#L316-L320

    On line 316, we zip two things: zip([e for d, e in zip(done, self.envs) if not d], acts)

    Here done is a vector of bools of length batch-size, self.envs is a list of GridEnv of length n-envs or buffer-size, and acts is a vector of ints of length (n-envs or buffer-size,).

    By default, all the lengths of the above objects should be 16.

    I was reading through the code, and noticed that if any of the elements in done are True, then on line 316 we filter them out with if not d. If env[0] was "done", then we would have a list of 15 envs, basically self.envs[1:]. Then when you zip up the actions and the shorter list envs, the actions will be aligned incorrectly... We will basically end up with self.envs[1:] being aligned to actions act[:-1]. As a result, step is now length 15, and on the next line, we again line up the incorrect actions of length 16 with our step list of length 16.

    Perhaps we need to filter act based on the done vector? E.g act = act[done] after line 316?

    Maybe I've got this wrong, so apologies for the noise if that's the case, but thought I'd leave a note in case what I'm suggesting is the case.

    All the best!

    opened by fedden 1
  • Clarification regarding the number of molecular building blocks. Why they are different from JT-VAE?

    Clarification regarding the number of molecular building blocks. Why they are different from JT-VAE?

    Hello,

    First, I really enjoyed reading the paper. Amazing work!

    I have a question regarding the number of building blocks used for generating small molecules. Appendix A.3 of the paper states that there are a total of 105 unique building blocks (after accounting for different attachment points) and that they were obtained by the process suggested by the JT-VAE paper. (Jin et al. (2020)). However, in the JT-VAE paper, the total vocabulary size is $|\chi|=780$ obtained from the same ZINC dataset. My understanding is they are both the same. If that is correct, why are the number of building blocks different here? What am I missing? If they are not the same, can you please explain the difference?

    Thank you so much for your help

    opened by Srilok 1
Releases(paper_version)
Owner
Emmanuel Bengio
Emmanuel Bengio
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback

Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L

Lukas Braun 3 Dec 15, 2021
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the

Zhanghan Ke 255 Dec 11, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022