Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

Overview

Awesome Graph Classification

Awesome PRs Welcome License repo sizebenedekrozemberczki

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers with reference implementations.

Relevant graph classification benchmark datasets are available [here].

Similar collections about community detection, classification/regression tree, fraud detection, Monte Carlo tree search, and gradient boosting papers with implementations.


Contents

  1. Matrix Factorization
  2. Spectral and Statistical Fingerprints
  3. Deep Learning
  4. Graph Kernels

License

Comments
  • Graph classification method from ICDM '19

    Graph classification method from ICDM '19

    Hi, thanks for maintaining such a comprehensive list of methods for graph-level machine learning. I am an author of the ICDM 2019 paper "Distribution of Node Embeddings as Multiresolution Features for Graphs" and was wondering if it could be included on this list?
    Overview: Derives a randomized feature map for a graph based on the distribution of its node embeddings in vector space. As the proposed technique is an explicit feature map, it probably fits in the section on "spectral and statistical fingerprints", but its theoretical underpinnings come from the graph kernel literature and so it might fit in that section instead. Won best student paper at ICDM 2019.
    Paper: [https://ieeexplore.ieee.org/document/8970922] Code: [https://github.com/GemsLab/RGM]

    opened by markheimann 3
  • Another graph paper

    Another graph paper

    You can also add to the list "Mapping Images to Scene Graphs with Permutation-Invariant Structured Prediction" from NeurIPS18.

    It's a novel graph architecture for mapping images to scene graphs using a permutation invariant property, which achieves a new state-of-the-art results on Visual Genome dataset.

    paper: https://arxiv.org/abs/1802.05451 code: https://github.com/shikorab/SceneGraph

    opened by roeiherz 3
  • Please add KDD 2019 paper, data, code

    Please add KDD 2019 paper, data, code

    Hi!

    Thank you for this awesome repository!

    Could you please add the following paper, code, and data link to the repository: Paper: Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks Authors: Srijan Kumar, Xikun Zhang, Jure Leskovec Venue: ACM SIGKDD 2019 (Proceedings of the 25th ACM SIGKDD international conference on Knowledge discovery and data mining) Project page: http://snap.stanford.edu/jodie/ Code: https://github.com/srijankr/jodie/ All datasets: http://snap.stanford.edu/jodie/

    Many thanks, Srijan

    opened by srijankr 3
  • Graph classification based on topological features

    Graph classification based on topological features

    Hi there,

    please add our paper “A Persistent Weisfeiler–Lehman Procedure for Graph Classification” as well to this repository:

    Paper: http://proceedings.mlr.press/v97/rieck19a/rieck19a.pdf Code: https://github.com/BorgwardtLab/P-WL

    Best, Bastian

    opened by Pseudomanifold 2
  • Updates of the library py-graph

    Updates of the library py-graph

    Hi, I am the author of the library py-graph. Thanks a lot for including our library! Just to inform you that we updated our library and now there are implementations for 8 graph kernels. We also upload our library to PyPI. Thanks!

    opened by jajupmochi 2
  • Missing SAGPool

    Missing SAGPool

    Attention-based pooling operator without having to learn n^2 cluster-assignment matrix as in DiffPool. paper: https://arxiv.org/abs/1904.08082 code: https://github.com/inyeoplee77/SAGPool

    opened by choltz95 2
  • Add a paper regarding to semi-supervised heterogenous graph embedding

    Add a paper regarding to semi-supervised heterogenous graph embedding

    hi, i'm trying to add our paper on semi-supervised heterogenous graph embedding to your awesome repository. it was cited 60+ times. hope you accept the pull request. thanks!

    opened by chentingpc 2
  • KDD2020 Paper

    KDD2020 Paper

    Hi,

    in our KDD2020 work we solve a graph classification problem with nice results!

    Paper: https://dl.acm.org/doi/10.1145/3394486.3403383 Code: https://github.com/tlancian/contrast-subgraph

    Would you add it to the repo?

    Thank you, Tommaso

    opened by tlancian 1
  • some other graph level classification papers

    some other graph level classification papers

    Hi, those are some other graph level classification papers for your information Graph Kernel: "A Graph Kernel Based on the Jensen-Shannon Representation Alignment" IJCAI 2015 Lu Bai, Zhihong Zhang, Chaoyan Wang, Xiao Bai, Edwin R. Hancock paper: http://ijcai.org/Proceedings/15/Papers/468.pdf code: https://github.com/baiuoy/Matlab-code-JS-alignment-kernel-IJCAI-2015

    “An Aligned Subtree Kernel for Weighted Graphs” ICML 2015 Lu Bai, Luca Rossi, Zhihong Zhang, Edwin R. Hancock paper: http://proceedings.mlr.press/v37/bai15.pdf code will be released soon

    Deep Learning: "Learning Aligned-Spatial Graph Convolutional Networks for Graph Classification" ECML-PKDD 2019 Lu Bai, Yuhang Jiao, Lixin Cui, Edwin R. Hancock paper: https://arxiv.org/abs/1904.04238 code: https://github.com/baiuoy/ASGCN_ECML-PKDD2019 (will be released soon)

    opened by David-AJ 1
  • Add Ego-CNN (ICML'19) and fix 1 typo

    Add Ego-CNN (ICML'19) and fix 1 typo

    Hi, thanks for this awesome repo on graph classification. Please help review the PR. I'd like to add our paper and help clarify 1 workshop paper.

    Thanks, Ruochun

    opened by rctzeng 1
  • A Simple Yet Effective Baseline for Non-Attribute Graph Classification

    A Simple Yet Effective Baseline for Non-Attribute Graph Classification

    Hi,

    Thank you for your paper list. I am the author of the paper A Simple Yet Effective Baseline for Non-Attribute Graph Classification. It has been accepted by ICLR 2019 graph representation learning workshop (https://rlgm.github.io/). Would you like to update the record? Thanks!

    Best, Chen

    opened by Chen-Cai-OSU 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Re-TACRED Re-TACRED: Addressing Shortcomings of the TACRED Dataset

George Stoica 40 Dec 10, 2022
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

U-Net Implementation By Christopher Ley This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical

Christopher Ley 1 Jan 06, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022