A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Overview

Masked Autoencoders Are Scalable Vision Learners

Open In Colab

A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementation of the proposed method is available in mae-pretraining.ipynb notebook. It includes evaluation with linear probing as well. Furthermore, the notebook can be fully executed on Google Colab. Our main objective is to present the core idea of the proposed method in a minimal and readable manner. We have also prepared a blog for getting started with Masked Autoencoder easily.


With just 100 epochs of pre-training and a fairly lightweight and asymmetric Autoencoder architecture we achieve 49.33%% accuracy with linear probing on the CIFAR-10 dataset. Our training logs and encoder weights are released in Weights and Logs. For comparison, we took the encoder architecture and trained it from scratch (refer to regular-classification.ipynb) in a fully supervised manner. This gave us ~76% test top-1 accuracy.

We note that with further hyperparameter tuning and more epochs of pre-training, we can achieve a better performance with linear-probing. Below we present some more results:

Config Masking
proportion
LP
performance
Encoder weights
& logs
Encoder & decoder layers: 3 & 1
Batch size: 256
0.6 44.25% Link
Do 0.75 46.84% Link
Encoder & decoder layers: 6 & 2
Batch size: 256
0.75 48.16% Link
Encoder & decoder layers: 9 & 3
Batch size: 256
Weight deacy: 1e-5
0.75 49.33% Link

LP denotes linear-probing. Config is mostly based on what we define in the hyperparameters section of this notebook: mae-pretraining.ipynb.

Acknowledgements

References

[1] Masked Autoencoders Are Scalable Vision Learners; He et al.; arXiv 2021; https://arxiv.org/abs/2111.06377.

You might also like...
A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx] Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Official implementation of the paper
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

SimMIM: A Simple Framework for Masked Image Modeling
SimMIM: A Simple Framework for Masked Image Modeling

SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of

SeMask: Semantically Masked Transformers for Semantic Segmentation.
SeMask: Semantically Masked Transformers for Semantic Segmentation.

SeMask: Semantically Masked Transformers Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi This repo co

FocusFace: Multi-task Contrastive Learning for Masked Face Recognition
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Comments
  • Excellent work (`mae.ipynb`)!

    Excellent work (`mae.ipynb`)!

    @ariG23498 this is fantastic stuff. Super clean, readable, and coherent with the original implementation. A couple of suggestions that would likely make things even better:

    • Since you have already implemented masking visualization utilities how about making them part of the PatchEncoder itself? That way you could let it accept a test image, apply random masking, and plot it just like the way you are doing in the earlier cells. This way I believe the notebook will be cleaner.
    • AdamW (tfa.optimizers.adamw) is a better choice when it comes to training Transformer-based models.
    • Are we taking the loss on the correct component? I remember you mentioning it being dealt with differently.

    After these points are addressed I will take a crack at porting the training loop to TPUs along with other performance monitoring callbacks.

    opened by sayakpaul 7
  • Unshuffle the patches?

    Unshuffle the patches?

    Your code helps me a lot! However, I still have some questions. In the paper, the authors say they unshuffle the full list before applying the deocder. In the MaskedAutoencoder class of your implementation, decoder_inputs = tf.concat([encoder_outputs, masked_embeddings], axis=1)
    no unshuffling is used. I wonder if you can tell me the purpose of doing so? Thanks a lot!

    opened by changtaoli 2
  • Could you also share the weight of the pretrained decoder?

    Could you also share the weight of the pretrained decoder?

    Hi,

    Thanks for your excellent implementation! I found that you have shared the weights of the encoder, but if we want to replicate the reconstruction, the pretrained decoder is still needed. So, could you also share the weight of the pretrained decoder?

    Best Regards, Hongxin

    opened by hongxin001 1
  • Issue with the plotting utility `show_masked_image`

    Issue with the plotting utility `show_masked_image`

    Should be:

    def show_masked_image(self, patches):
            # Utility function that helps visualize maksed images.
            _, unmask_indices = self.get_random_indices()
            unmasked_patches = tf.gather(patches, unmask_indices, axis=1, batch_dims=1)
    
            # Necessary for plotting.
            ids = tf.argsort(unmask_indices)
            sorted_unmask_indices = tf.sort(unmask_indices)
            unmasked_patches = tf.gather(unmasked_patches, ids, batch_dims=1)
    
            # Select a random index for visualization.
            idx = np.random.choice(len(sorted_unmask_indices))
            print(f"Index selected: {idx}.")
    
            n = int(np.sqrt(NUM_PATCHES))
            unmask_index = sorted_unmask_indices[idx]
            unmasked_patch = unmasked_patches[idx]
    
            plt.figure(figsize=(4, 4))
    
            count = 0
            for i in range(NUM_PATCHES):
                ax = plt.subplot(n, n, i + 1)
    
                if count < unmask_index.shape[0] and unmask_index[count].numpy() == i:
                    patch = unmasked_patch[count]
                    patch_img = tf.reshape(patch, (PATCH_SIZE, PATCH_SIZE, 3))
                    plt.imshow(patch_img)
                    plt.axis("off")
                    count = count + 1
                else:
                    patch_img = tf.zeros((PATCH_SIZE, PATCH_SIZE, 3))
                    plt.imshow(patch_img)
                    plt.axis("off")
            plt.show()
    
            # Return the random index to validate the image outside the method.
            return idx
    
    opened by ariG23498 1
Releases(v1.0.0)
Owner
Aritra Roy Gosthipaty
Learning with a learning rate of 1e-10.
Aritra Roy Gosthipaty
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | ไธญๆ–‡ Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
Monitor your ML jobs on mobile devices๐Ÿ“ฑ, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor ๐Ÿ‘€ your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
๐Ÿค Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

๐Ÿค Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos ๐ŸŽ‰๏ธ ๐Ÿ“œ Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
Repository of 3D Object Detection with Pointformer (CVPR2021)

3D Object Detection with Pointformer This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This wo

Zhuofan Xia 117 Jan 06, 2023
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"

ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess

Layer6 Labs 14 Dec 06, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
Video2x - A lossless video/GIF/image upscaler achieved with waifu2x, Anime4K, SRMD and RealSR.

Official Discussion Group (Telegram): https://t.me/video2x A Discord server is also available. Please note that most developers are only on Telegram.

K4YT3X 5.9k Dec 31, 2022