A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

Related tags

Deep LearningA-ESRGAN
Overview

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators

The authors are hidden for the purpose of double blind in the process of review.

Main idea

Introduce attention U-net into the field of blind real world image super resolution. We aims to provide a super resolution method with sharper result and less distortion.

Sharper:

Less distortion:

Network Architecture

The overall architecture of the A-ESRGAN, where the generator is adopted from ESRGAN:

The architecture of a single attention U-net discriminator:

The attention block is modified from 3D attention U-net's attention gate:

Attention Map

We argue it is the attention map that plays the main role in improving the quality of super resolution images. To support our idea, we visualize how the attention coefficients changes in time and space.

We argue that during the training process the attention will gradually focus on regions where color changes abruptly, i.e. edges. And attention layer in different depth will give us edges of different granularity.

Attention coefficients changes across time.

Attention coefficients changes across space.

Multi Scale

Multi scale discriminator has to learn whether parts of the image is clear enough from different receptive fields. From this perspective, different discriminator can learn complementary knowledge. From the figure below, normal discriminator learn to focus on edges, while down-sampled discriminator learn patch-like patterns such as textures.

Thus, comparing with the single attention u-net discriminator, multi-scale u-net discriminator can generate more realistic and detailed images.

Better Texture:

Test Sets

The datasets for test in our A-ESRGAN model are the standard benchmark datasets Set5, Set14, BSD100, Sun-Hays80, Urban100. Noted that we directly apply 4X super resolution to the original real world images and use NIQE to test the perceptual quality of the result. As shown in the figure below, these 5 datasets have covered a large variety of images.

A combined dataset can be find in DatasetsForSR.zip.

We compare with ESRGAN, RealSR, BSRGAN, RealESRGAN on the above 5 datasets and use NIQE as our metrics. The result can be seen in the table below:

Note a lower NIQE score shows a better perceptual quality.

Quick Use

Inference Script

! We now only provides 4X super resolution now.

Download pre-trained models: A-ESRGAN-Single.pth to the experiments/pretrained_models.

wget https://github.com/aergan/A-ESRGAN/releases/download/v1.0.0/A_ESRGAN_Single.pth

Inference:

python inference_aesrgan.py --model_path=experiments/pretrained_models/A_ESRGAN_Single.pth --input=inputs

Results are in the results folder

NIQE Script

The NIQE Script is used to give the Mean NIQE score of a certain directory of images.

Cacluate NIQE score:

cd NIQE_Script
python niqe.py --path=../results

Visualization Script

The Visualization Script is used to visualize the attention coefficient of each attention layer in the attention based U-net discriminator. It has two scripts. One script discriminator_attention_visual(Single).py is used to visualize how the attention of each layer is updated during the training process on a certain image. Another Script combine.py is used to combine the heat map together with original image.

Generate heat maps:

First download single.zip and unzip to experiments/pretrained_models/single

cd Visualization_Script
python discriminator_attention_visual(Single).py --img_path=../inputs/img_015_SRF_4_HR.png

The heat maps will be contained in Visualization_Script/Visual

If you want to see how the heat map looks when combining with the original image, run:

python combine.py --img_path=../inputs/img_015_SRF_4_HR.png

The combined images will be contained in Visualization_Script/Combined

! Multi-scale discriminator attention map visualization:

Download multi.zip and unzip to experiments/pretrained_models/multi

Run discriminator_attention_visual(Mulit).py similar to discriminator_attention_visual(Single).py.

!See what the multi-scale discriminator output

Run Multi_discriminator_Output.py and you could see the visualization of pixel-wise loss from the discriminators.

! Note we haven't provided a combined script for multi attention map yet.

Model_Zoo

The following models are the generators, used in the A-ESRGAN

The following models are discriminators, which are usually used for fine-tuning.

The following models are the checkpoints of discriminators during A-ESRGAN training process, which are provided for visualization attention.

Training and Finetuning on your own dataset

We follow the same setting as RealESRGAN, and a detailed guide can be found in Training.md.

Acknowledgement

Our implementation of A-ESRGAN is based on the BasicSR and Real-ESRGAN.

You might also like...
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

[CVPR 2022] Official PyTorch Implementation for
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

PyTorch code for our paper
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder
My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder

anime upscaler My usage of Real-ESRGAN to upscale anime, I hope to use this on a proper GPU cuz doing this on CPU is completely shit 😂 , I even tried

Comments
  • About the pre-trained model

    About the pre-trained model

    Hi, is the A-ESRGAN-multi pertained model available?

    the link below seems broken.

    https://github.com/aergan/A-ESRGAN/releases/download/v1.0.0/A_ESRGAN_Multi.pth

    opened by ShiinaMitsuki 1
  • some error

    some error

    /media/xyt/software/anaconda3/envs/basicSR/bin/python /media/xyt/data/github/SR/code/A-ESRGAN/train.py -opt options/train_aesrgan_x4plus.yml --debug 2022-02-09 18:17:12,962 INFO: Dataset [RealESRGANDataset] - DF2K is built. 2022-02-09 18:17:12,962 INFO: Training statistics: Number of train images: 500 Dataset enlarge ratio: 1 Batch size per gpu: 6 World size (gpu number): 1 Require iter number per epoch: 84 Total epochs: 4762; iters: 400000. Traceback (most recent call last): File "/media/xyt/data/github/SR/code/A-ESRGAN/train.py", line 11, in train_pipeline(root_path) File "/media/xyt/software/anaconda3/envs/basicSR/lib/python3.7/site-packages/basicsr/train.py", line 128, in train_pipeline model = build_model(opt) File "/media/xyt/software/anaconda3/envs/basicSR/lib/python3.7/site-packages/basicsr/models/init.py", line 27, in build_model model = MODEL_REGISTRY.get(opt['model_type'])(opt) File "/media/xyt/software/anaconda3/envs/basicSR/lib/python3.7/site-packages/basicsr/utils/registry.py", line 65, in get raise KeyError(f"No object named '{name}' found in '{self._name}' registry!") KeyError: "No object named 'RealESRGANModel' found in 'model' registry!"

    opened by xiayutong 1
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
The hippynn python package - a modular library for atomistic machine learning with pytorch.

The hippynn python package - a modular library for atomistic machine learning with pytorch. We aim to provide a powerful library for the training of a

Los Alamos National Laboratory 37 Dec 29, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022