Implementations of CNNs, RNNs, GANs, etc

Overview

Tensorflow Programs and Tutorials

This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also contain some experiments on cool papers that I read. Hopefully, the notebooks will be helpful to anyone reading!

  • CNN's with Noisy Labels - This notebook looks at a recent paper that discusses how convolutional neural networks that are trained on random labels (with some probability) are still able to acheive good accuracy on MNIST. I thought that the paper showed some eye-brow raising results, so I went ahead and tried it out for myself. It was pretty amazing to see that even when training a CNN with random labels 50% of the time, and the correct labels the other 50% of the time, the network was still able to get a 90+% accuracy.

  • Character Level RNN (Work in Progress) - This notebook shows you how to train a character level RNN in Tensorflow. The idea was inspired by Andrej Karpathy's famous blog post and was based on this Keras implementation. In this notebook, you'll learn more about what the model is doing, and how you can input your own dataset, and train a model to generate similar looking text.

  • Convolutional Neural Networks - This notebook goes through a simple convolutional neural network implementation in Tensorflow. The model is very similar to the own described in the Tensorflow docs. Hopefully this notebook can give you a better understanding of what is necessary to create and train your own CNNs. For a more conceptual view of CNNs, check out my introductory blog post on them.

  • Generative Adversarial Networks - This notebook goes through the creation of a generative adversarial network. GANs are one of the hottest topics in deep learning. From a high level, GANs are composed of two components, a generator and a discriminator. The discriminator has the task of determining whether a given image looks natural (ie, is an image from the dataset) or looks like it has been artificially created. The task of the generator is to create natural looking images that are similar to the original data distribution, images that look natural enough to fool the discriminator network.For more of a conceptual view of GANs, check out my blog post.

  • Linear and Logistic Regression - This notebook shows you how Tensorflow is not just a deep learning library, but is a library centered on numerical computation, which allows you to create classic machine learning models relatively easily. Linear regression and logistic regression are two of the most simple, yet useful models in all of machine learning.

  • Simple Neural Networks - This notebook shows you how to create simple 1 and 2 layer neural networks. We'll then see how these networks perform on MNIST, and look at the type of hyperparamters that affect a model's accuracy (network architecture, weight initialization, learning rate, etc)

  • Math in Tensorflow - This notebook introduces you to variables, constants, and placeholders in Tensorflow. It'll go into describing sessions, and showinng you how to perform typical mathematical operations and deal with large matrices.

  • Question Pair Classification with RNNs (Work in Progress) - This notebook looks at the newly released question pair dataset released by Quora a little earlier this year. It looks at the ways in which you can build a machine learning model to predict whether two sentences are duplicates of one another. Before running this notebook, it's very important to extract all the data. We'll run the following command to get our word vectors and training/testing matrices.

    tar -xvzf Data/Quora/QuoraData.tar.gz
  • SELU Nonlinearity - A recent paper titled "Self Normalizing Neural Networks" started getting a lot of buzz starting in June 2017. The main contribution of the paper was this new nonlinear activation function called a SELU (scaled exponential linear unit). We'll be looking at how this function performs in practice with simple neural nets and CNNs.

  • Sentiment Analysis with LSTMs - In this notebook, we'll be looking at how to apply deep learning techniques to the task of sentiment analysis. Sentiment analysis can be thought of as the exercise of taking a sentence, paragraph, document, or any piece of natural language, and determining whether that text's emotional tone is positive, negative or neutral. We'll look at why RNNs and LSTMs are the most popular choices for handling natural language processing tasks. Be sure to run the following commands to get our word vectors and training data.

    tar -xvzf Data/Sentiment/models.tar.gz
    tar -xvzf Data/Sentiment/training_data.tar.gz
  • Universal Approximation Theorem (Work in Progress) - The Universal Approximation Theorem states that any feed forward neural network with a single hidden layer can model any function. In this notebook, I'll go through a practical example of illustrating why this theorem works, and talk about what the implications are for when you're training your own neural networks. cough Overfitting cough

  • Learning to Model the XOR Function (Work in Progress) - XOR is one of the classic functions we see in machine learning theory textbooks. The significance is that we cannot fit a linear model to this function no matter how hard we try. In this notebook, you'll see proof of that, and you'll see how adding a simple hidden layer to the neural net can solve the problem.

Owner
Adit Deshpande
Engineering at Forward | UCLA CS '19
Adit Deshpande
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
Model-based reinforcement learning in TensorFlow

Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,

46 Nov 09, 2022
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
Building Ellee — A GPT-3 and Computer Vision Powered Talking Robotic Teddy Bear With Human Level Conversation Intelligence

Using an object detection and facial recognition system built on MobileNetSSDV2 and Dlib and running on an NVIDIA Jetson Nano, a GPT-3 model, Google Speech Recognition, Amazon Polly and servo motors,

24 Oct 26, 2022
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023