[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

Overview

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links

PRs Welcome arXiv PWC PWC

This repo provides the model, code & data of our paper: LinkBERT: Pretraining Language Models with Document Links (ACL 2022). [PDF] [HuggingFace Models]

Overview

LinkBERT is a new pretrained language model (improvement of BERT) that captures document links such as hyperlinks and citation links to include knowledge that spans across multiple documents. Specifically, it was pretrained by feeding linked documents into the same language model context, besides using a single document as in BERT.

LinkBERT can be used as a drop-in replacement for BERT. It achieves better performance for general language understanding tasks (e.g. text classification), and is also particularly effective for knowledge-intensive tasks (e.g. question answering) and cross-document tasks (e.g. reading comprehension, document retrieval).

1. Pretrained Models

We release the pretrained LinkBERT (-base and -large sizes) for both the general domain and biomedical domain. These models have the same format as the HuggingFace BERT models, and you can easily switch them with LinkBERT models.

Model Size Domain Pretraining Corpus Download Link ( 🤗 HuggingFace)
LinkBERT-base 110M parameters General Wikipedia with hyperlinks michiyasunaga/LinkBERT-base
LinkBERT-large 340M parameters General Wikipedia with hyperlinks michiyasunaga/LinkBERT-large
BioLinkBERT-base 110M parameters Biomedicine PubMed with citation links michiyasunaga/BioLinkBERT-base
BioLinkBERT-large 340M parameters Biomedicine PubMed with citation links michiyasunaga/BioLinkBERT-large

To use these models in 🤗 Transformers:

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('michiyasunaga/LinkBERT-large')
model = AutoModel.from_pretrained('michiyasunaga/LinkBERT-large')
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
outputs = model(**inputs)

To fine-tune the models, see Section 2 & 3 below. When fine-tuned on downstream tasks, LinkBERT achieves the following results.
General benchmarks (MRQA and GLUE):

HotpotQA TriviaQA SearchQA NaturalQ NewsQA SQuAD GLUE
F1 F1 F1 F1 F1 F1 Avg score
BERT-base 76.0 70.3 74.2 76.5 65.7 88.7 79.2
LinkBERT-base 78.2 73.9 76.8 78.3 69.3 90.1 79.6
BERT-large 78.1 73.7 78.3 79.0 70.9 91.1 80.7
LinkBERT-large 80.8 78.2 80.5 81.0 72.6 92.7 81.1

Biomedical benchmarks (BLURB, MedQA, MMLU, etc): BioLinkBERT attains new state-of-the-art 😊

BLURB score PubMedQA BioASQ MedQA-USMLE
PubmedBERT-base 81.10 55.8 87.5 38.1
BioLinkBERT-base 83.39 70.2 91.4 40.0
BioLinkBERT-large 84.30 72.2 94.8 44.6
MMLU-professional medicine
GPT-3 (175 params) 38.7
UnifiedQA (11B params) 43.2
BioLinkBERT-large (340M params) 50.7

2. Set up environment and data

Environment

Run the following commands to create a conda environment:

conda create -n linkbert python=3.8
source activate linkbert
pip install torch==1.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
pip install transformers==4.9.1 datasets==1.11.0 fairscale==0.4.0 wandb sklearn seqeval

Data

You can download the preprocessed datasets on which we evaluated LinkBERT from [here]. Simply download this zip file and unzip it. This includes:

  • MRQA question answering datasets (HotpotQA, TriviaQA, NaturalQuestions, SearchQA, NewsQA, SQuAD)
  • BLURB biomedical NLP datasets (PubMedQA, BioASQ, HoC, Chemprot, PICO, etc.)
  • MedQA-USMLE biomedical reasoning dataset.
  • MMLU-professional medicine reasoning dataset.

They are all preprocessed in the HuggingFace dataset format.

If you would like to preprocess the raw data from scratch, you can take the following steps:

  • First download the raw datasets from the original sources by following instructions in scripts/download_raw_data.sh
  • Then run the preprocessing scripts scripts/preprocess_{mrqa,blurb,medqa,mmlu}.py.

3. Fine-tune LinkBERT

Change the working directory to src/, and follow the instructions below for each dataset.

MRQA

To fine-tune for the MRQA datasets (HotpotQA, TriviaQA, NaturalQuestions, SearchQA, NewsQA, SQuAD), run commands listed in run_examples_mrqa_linkbert-{base,large}.sh.

BLURB

To fine-tune for the BLURB biomedial datasets (PubMedQA, BioASQ, HoC, Chemprot, PICO, etc.), run commands listed in run_examples_blurb_biolinkbert-{base,large}.sh.

MedQA & MMLU

To fine-tune for the MedQA-USMLE dataset, run commands listed in run_examples_medqa_biolinkbert-{base,large}.sh.

To evaluate the fine-tuned model additionally on MMLU-professional medicine, run the commands listed at the bottom of run_examples_medqa_biolinkbert-large.sh.

Reproducibility

We also provide Codalab worksheet, on which we record our experiments. You may find it useful for replicating the experiments using the same model, code, data, and environment.

Citation

If you find our work helpful, please cite the following:

@InProceedings{yasunaga2022linkbert,
  author =  {Michihiro Yasunaga and Jure Leskovec and Percy Liang},
  title =   {LinkBERT: Pretraining Language Models with Document Links},
  year =    {2022},  
  booktitle = {Association for Computational Linguistics (ACL)},  
}
Owner
Michihiro Yasunaga
PhD Student in Computer Science
Michihiro Yasunaga
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Scripts used to make and evaluate OpenAlex's concept tagging model

openalex-concept-tagging This repository contains all of the code for getting the concept tagger up and running. To learn more about where this model

OurResearch 18 Dec 09, 2022
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
Indices Matter: Learning to Index for Deep Image Matting

IndexNet Matting This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper: Indices Matt

Hao Lu 357 Nov 26, 2022
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
Visualizing Yolov5's layers using GradCam

YOLO-V5 GRADCAM I constantly desired to know to which part of an object the object-detection models pay more attention. So I searched for it, but I di

Pooya Mohammadi Kazaj 200 Jan 01, 2023
[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah

Hanxun Huang 98 Dec 07, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022