Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Overview

Manifold-SCA

Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

The repo is organized as:

📂manifold-sca
 ┣ 📂vulnerability
 ┃ ┣ 📂contribution
 ┃ ┣ 📜{dataset}-{program}-count.json
 ┃ ┗ 📜{program}.dis
 ┣ 📂code
 ┃ ┣ 📂SCA
 ┃ ┣ 📂tools
 ┃ ┗ 📂pp
 ┣ 📂audio
 ┗ 📂output

Code

We release our code in folder code. The implementation of our framework is in folder code/SCA and tools we use to process input/output data are listed in folder code/tools. To launch Prime+Prob, you can use the code in code/pp.

Attack

To prepare the training data for learning data manifold, you first need to instrument the binary with the released pintool code/tools/pinatrace.cpp. You will get a sequence of instruction address: accessed address when the binary processes a media data. Then you need to fold the sequence of accessed address into a matrix and convert the matrix with correct format (e.g., tensor, or numpy array).

We release the scripts for training the framework in folder code/SCA. Before training you need to first customize data paths in each script. The training procedure ends after 100 epochs and takes less than 24 hours on one Nvidia GeForce RTX 2080 GPU.

Localize

Recall that we localize vulnerabilities by pinpointing records in a trace that contribute most to reconstructing media data. So, to perform localization, you need first train the framework as we introduced before.

After training the framework, you just need to run code/localize.py and code/pinpoint.py to localize records in a side channel trace. Note that what you get in this step are several accessed addresses with their indexes in the trace. You need further get the corresponding instruction addresses based on the instrument output you generated when preparing training data.

We release the localized vulnerabilities in folder vulnerability. In folder vulnerability/contribution, we list the corresponding instruction addresses of records that make primary contribution to the reconstruction of media data. We further map the pinpoined instructions back to the corresponding functions. These functions are regarded as side-channel vulnerable functions. We list the results in {dataset}-{program}-count.json, where higher counting indicates a higher possibility of being vulnerable.

Despite each program is evaluated on different datasets, we can still observe that highly consistent vulnerabilities are localized in the same program.

Prime+Probe

We use Mastik to launch Prime+Probe on L1 cache of Intel Xeon CPU and AMD Ryzen CPU. We release our scripts in folder code/pp.

The experiment is launched in Linux OS. You need first to install taskset and cpuset.

We assume victim and spy are on the same CPU core and no other process is runing on this CPU core. To isolate a CPU core, you need to run sudo cset shield --cpu {cpu_id}.

Then run sudo cset shield --exec python run_pp.py -- {cpu_id} {segment_id}. Note that we seperate the media data into several segments to speed up the side channel collection. code/pp/run_pp.py runs code/pp/pp_audio.py with taskset. code/pp/pp_audio.py is the coordinator which runs spy and victim on the same CPU core simultaneously and saves the collected cache set access.

Audio

We upload all (total 2,552) audios reconstructed by our framework under Prime+Probe to folder audio/sc09-pp for result verification. Each audio is named as {Number}_{hash}_{index}.wav and the {Number} is the content of the corresponding reference input, e.g., for a reconstructed audio One_94de6a6a_nohash_1.wav, the number said in the reference input is one. As we reported in the paper, most (~80%) of the audios have consistent contents (i.e., the numbers) with the reference inputs.

Output

We upload media data reconstructed by our framework in folder output.

Owner
Yuanyuan Yuan
Yuanyuan Yuan
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
Machine Learning University: Accelerated Computer Vision Class

Machine Learning University: Accelerated Computer Vision Class This repository contains slides, notebooks, and datasets for the Machine Learning Unive

AWS Samples 1.3k Dec 28, 2022
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
🏅 Top 5% in 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지

AI_SPARK_CHALLENG_Object_Detection 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지 🏅 Top 5% in mAP(0.75) (443명 중 13등, mAP: 0.98116) 대회 설명 Edge 환경에서의 가축 Object Dete

3 Sep 19, 2022
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".

DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project

6 Nov 07, 2022
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties

Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties 8.11.2021 Andrij Vasylenko I

Leverhulme Research Centre for Functional Materials Design 4 Dec 20, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
A spherical CNN for weather forecasting

DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew

DeepSphere 47 Dec 25, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022