"Cambio de monedas" Change-making problem with Python, dynamic programming best solutions,

Overview

Change-making-problem / Cambio de monedas

Entendiendo el problema

Dada una cantidad de dinero y una lista de denominaciones de monedas, encontrar el número mínimo de monedas (de determinadas denominaciones) que sumen la cantidad de dinero exacta.

Es un subcaso especial del problema de la mochila

Ejemplo 1:

Pagar la cantidad de 10 usando las siguientes monedas [2,3,5,6] Tenemos 7 posibles combinaciones de cambios {2,2,2,2,2}, {2,2,3,3}, {2,2,6}, {2,3,5}, {5,5}

Donde la mejor combinación es {5,5} que usa la menor cantidad de monedas

Consideraciones

  • Este problema supone que todas las monedas están disponibles infinitamente.
  • Dado el caso donde la cantidad de dinero es 0 el resultado sera una lista vacia [ ]
  • Dado el caso donde no es posible pagar la cantidad con las monedas proporcionadas retornar nulo. Ejemplo cantidad=5 monedas[2,4]

Solucion 1

La primera solución contempla todas las posibles combinaciones, podemos implementarla dividiendo en pequeños subproblemas y aplicando recursividad.

Por cada moneda hacemos una resta de la cantidad de dinero menos el valor de la moneda de esta forma obtenemos un punto de inicio de cada combinación y dividimos el problema en subproblemas. Aqui podemos aplicar recursividad y continuar haciendo las restas mientras la cantidad a pagar disminuye y llega a 0, de esta forma obtenemos todas las posibles combinaciones. En esta parte necesitamos hacer una validación para detener la iteración cuando la cantidad llegue a igual o menor que 0 (Si llega a 0 sabemos que es una posible solución).

Ejemplo de divición de subproblemas para el caso, monedas: [1,2,3] y cantidad de 5 subPrograms

Seguido de esto necesitamos encontrar la mejor solución que úse la menor cantidad de monedas, necesitamos hacer una comparacion para obtener la mejor solución de cada suproblema, guardarla y retornar la combinacion con menor cantidad de monedas por cada nivel (cada vez que disminuimos la cantidad a pagar). Por eso esta primera solución es una estrategia de análisis top-down (de arriba hacia abajo)

#monedas debe ser un arreglo de enteros, cantidad debe ser un entero no menor que 0
def makeChange(monedas, cantidad):
    if cantidad == 0: #Validación cuando lleguemos a la cantidad 0
        return []
    if cantidad < 0: #Validación para saber que llegamos a una cantidad negativa que no se puede pagar
        return None
    resultadoOptimo = None #declaramos e inicializamos el resultadoOptimo que retornaremos
    for moneda in monedas: #iteramos sobre cada moneda
        #llamamos a makeChange para obtener una posible solución
        #Restamos el valor actual de moneda para dividir en subproblemas
        combinacion = makeChange(monedas, cantidad - moneda) #Aqui podemos obtener [], None o una posible combinación
        if combinacion != None: #Validación para saber que es una posible combinacion
            candidata = combinacion + [moneda] #Validación para saber que es una posible combinacion
            #Comparamos si la solucion candidata es mejor que el resultadoOptimo actual lo remplazamos
            if (resultadoOptimo is None or len(candidata) < len(resultadoOptimo)):
                resultadoOptimo = candidata
    return resultadoOptimo

img

Notemos que tenemos subproblemas que se repiten, dada la recursividad y el uso de todas las combinaciones posibles, esta solucion tiene una complejidad exponencial y poco rendimiento.

Ejemplo 1/version 2:

Podemos guardar los resultados para reducir la complejidad a O(nv), n es la cantidad de monedas y v la cantidad de pasos, para esto podemos utilizar el módulo functools que nos proporciona un método llamado lru_cache que recibe una función de la cual vamos a poder guardar el resultado o lo que retorna, de esta forma si llamamos a una determinada función con los mismos argunmentos varias veces retornan el valor guardado en memoria sin ejecutar dicha función.

from functools import lru_cache #import del módulo
def makeChange(monedas, cantidad): #Necesitamos una funcion como envolvente para manejar las monedas
    @lru_cache(maxsize=None, typed=False) #inicializamos la cache sin límite para la función helper
    def helper(cantidad): #Guardamos el resultado para cada cantidad
        if cantidad == 0:
            return []
        if cantidad < 0:
            return None
        resultadoOptimo = None
        for moneda in monedas:
            combinacion = helper(cantidad - moneda)
            if combinacion != None:
                candidata = combinacion + [moneda]
                if (resultadoOptimo is None or len(candidata) < len(resultadoOptimo)):
                    resultadoOptimo = candidata
        return resultadoOptimo
    return helper(cantidad)

img

Cada solución es manejada como un módulo, el archivo main.py junta y llama cada solución y calcula su tiempo de ejecución, por defecto maneja el caso de monedas=[1,2,3,4,5,6,7,8,9] y cantidad=20 la cual se puede cambiar en main.py

    //with python 3
    python main.py

Solucion 2, bottom-up O(nv)

La segunda solución contempla la estrategia de análisis bottom-up, guiandonos de la primera solución empezaremos con la cantidad de 0 agregando las posibles combinaciones de monedas hasta llegar a la cantidad final.

Owner
Juan Antonio Ayola Cortes
Student | Software Engineering
Juan Antonio Ayola Cortes
School helper, helps you at your pyllabus's.

pyllabus, helps you at your syllabus's... WARNING: It won't run without config.py! You should add config.py yourself, it will include your APIKEY. e.g

Ahmet Efe AKYAZI 6 Aug 07, 2022
A Python library that helps data scientists to infer causation rather than observing correlation.

A Python library that helps data scientists to infer causation rather than observing correlation.

QuantumBlack Labs 1.7k Jan 04, 2023
jonny is a stack based programming language

jonny-lang jonny is a stack based programming language also compiling jonny files currently doesnt work on windows you can probably compile jonny file

1 Nov 24, 2021
Syntax highlighting for yarn.lock and bun.lockb files

Yarn.lock Syntax Highlighting Syntax highlighting for yarn.lock and bun.lockb files Installation Plugin is not publushed yet on Package Control, to in

Alexander Kuznetsov 4 Jul 06, 2022
A faster Python generator that get function results from multi-process workers

multiyield This package implements a Python generator that get function results from multi-process workers. The faster_fifo Queue (instead of the stan

Xin Du 1 Nov 18, 2021
Un script en python qui permet d'automatique bumpée (disboard.org) tout les 2h

auto-bumper Un script en python qui permet d'automatique bumpée (disboard.org) tout les 2h Pour la première utilisation, 1.Lancer Install.bat 2.(faire

!! 1 Jan 09, 2022
My tools box script for sigma

sigma_python_toolbox My tools box script for sigma purpose My goal is not to replace sigma but to put at disposal the scripts that I think to help me

4 Jun 20, 2022
Python solutions to Codeforces problems

CodeForces This repository is dedicated to my Python solutions for CodeForces problems. Feel free to copy, contribute and/or comment. If you find any

Shukur Sabzaliev 15 Dec 20, 2022
Chalice - A tool to facilitate Python based lambda deployment

Chalice is a tool to facilitate Python based lambda deployment. This repo contains the output of my basic exploration of this tool.

Csilla Bessenyei 1 Feb 03, 2022
The Python Fuzzer that the world deserves 🐍

pip3 install frelatage Current release : 0.0.2 The Python Fuzzer that the world deserves Installation | How it works | Features | Use Frelatage | Conf

Rog3r 219 Dec 21, 2022
Add all JuliaLang unicode abbreviations to AutoKey.

Autokey Unicode characters Usage This script adds all the unicode character abbreviations supported by Julia to autokey. However, instead of [TAB], th

Randolf Scholz 49 Dec 02, 2022
Subcert is an subdomain enumeration tool, that finds all the subdomains from certificate transparency logs.

Subcert Subcert is a subdomain enumeration tool, that finds all the valid subdomains from certificate transparency logs. Table of contents Setup Demo

A3h1nt 59 Dec 16, 2022
Polypheny Connector for Python

Polypheny Connector for Python This enables Python programs to access Polypheny databases, using an API that is compliant with the Python Database API

Polypheny 3 Jan 03, 2022
The fetch of the delegator list and the input of the epoch nonce need to be done independently

raffle The fetch of the delegator list and the input of the epoch nonce need to be done independently. Get the list of delegators at the epoch change.

1 Dec 15, 2021
Blender Light Manipulation - A script that makes it easier to work with light

Blender Light Manipulation A script that makes it easier to work with light 1. Wstęp W poniższej dokumentacji przedstawiony zostanie skrypt, który swo

Tomasz 1 Oct 19, 2021
Height 2 LDraw With python

Height2Ldraw About This project aims to be able to make a full lego 3D model using the ldraw file format (.ldr) from a height and color map, currently

1 Dec 22, 2021
Bazel rules to install Python dependencies with Poetry

rules_python_poetry Bazel rules to install Python dependencies from a Poetry project. Works with native Python rules for Bazel. Getting started Add th

Martin Liu 7 Dec 15, 2021
A tool to guide you for team selection based on mana and ruleset using your owned cards.

Splinterlands_Teams_Guide A tool to guide you for team selection based on mana and ruleset using your owned cards. Built With This project is built wi

Ruzaini Subri 3 Jul 30, 2022
A set of simple functions to upload and fetch pastes on paste.uploadgram.me

pastegram-py A set of simple functions to upload and fetch pastes on paste.uploadgram.me. API Documentation Methods upload_paste(contents: bytes, file

Uploadgram 3 Sep 13, 2022
A tool to help calculate how to split conveyors in Satisfactory into specific ratios.

Satisfactory Splitter Calculator A tool to help calculate how to split conveyors in Satisfactory into specific ratios. Dependencies Python 3.9 PyYAML

RobotiCat 5 Dec 22, 2022