Jittor 64*64 implementation of StyleGAN

Overview

StyleGanJittor (Tsinghua university computer graphics course)

Overview

Jittor 64*64 implementation of StyleGAN (Tsinghua university computer graphics course) This project is a repetition of StyleGAN based on python 3.8 + Jittor(计图) and The open source StyleGAN-Pytorch project. I train the model on the color_symbol_7k dataset for 40000 iterations. The model can generate 64×64 symbolic images.

StyleGAN is a generative adversarial network for image generation proposed by NVIDIA in 2018. According to the paper, the generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. The main improvement of this network model over previous models is the structure of the generator, including the addition of an eight-layer Mapping Network, the use of the AdaIn module, and the introduction of image randomness - these structures allow the generator to The overall features of the image are decoupled from the local features to synthesize images with better effects; at the same time, the network also has better latent space interpolation effects.

(Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 4401-4410.)

The training results are shown in Video1trainingResult.avi, Video2GenerationResult1.avi, and Video3GenerationResul2t.avi generated by the trained model.

The Checkpoint folder is the trained StyleGAN model, because it takes up a lot of storage space, the models have been deleted.The data folder is the color_symbol_7k dataset folder. The dataset is processed by the prepare_data file to obtain the LMDB database for accelerated training, and the database is stored in the mdb folder.The sample folder is the folder where the images are generated during the model training process, which can be used to traverse the training process. The generateSample folder is the sample image generated by calling StyleGenerator after the model training is completed.

The MultiResolutionDataset method for reading the LMDB database is defined in dataset.py, the Jittor model reproduced by Jittor is defined in model.py, train.py is used for the model training script, and VideoWrite.py is used to convert the generated image. output for video.

Environment and execution instructions

Project environment dependencies include jittor, ldbm, PIL, argparse, tqdm and some common python libraries.

First you need to unzip the dataset in the data folder. The model can be trained by the script in the terminal of the project environment python train.py --mixing "./mdb/color_symbol_7k_mdb"

Images can be generated based on the trained model and compared for their differences by the script python generate.py --size 64 --n_row 3 --n_col 5 --path './checkpoint/040000.model'

You can adjust the model training parameters by referring to the code in the args section of train.py and generate.py.

Details

The first is the data set preparation, using the LMDB database to accelerate the training. For model construction, refer to the model structure shown in the following figure in the original text, and the recurring Suri used in Pytorch open source version 1. Using the model-dependent framework shown in the second figure below, the original model is split into EqualConv2d, EqualLinear, StyleConvBlock , Convblock and other sub-parts are implemented, and finally built into a complete StyleGenerator and Discriminator.

image

image

In the model building and training part, follow the tutorial provided by the teaching assistant on the official website to help convert the torch method to the jittor method, and explore some other means to implement it yourself. Jittor's documentation is relatively incomplete, and some methods are different from Pytorch. In this case, I use a lower-level method for implementation.

For example: jt.sqrt(out.var(0, unbiased=False) + 1e-8) is used in the Discrimination part of the model to solve the variance of the given dimension of the tensor, and there is no corresponding var() in the Jittor framework method, so I use ((out-out.mean(0)).sqr().sum(0)+1e-8).sqrt() to implement the same function.

Results

Limited by the hardware, the model training time is long, and I don't have enough time to fine-tune various parameters, optimizers and various parameters, so the results obtained by training on Jittor are not as good as when I use the same model framework to train on Pytorch The result is good, but the progressive training process can be clearly seen from the video, and the generated symbols are gradually clear, and the results are gradually getting better.

Figures below are sample results obtained by training on Jittor and Pytorch respectively. For details, please refer to the video files in the folder. The training results of the same model and code on Pytorch can be found in the sample_torch folder.

figures by Jittor figures by Pytorch

To be continued

Owner
Song Shengyu
Song Shengyu
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet. use python main.py to start training. PSM-Net Pytorch reimplementatio

XIAOTIAN LIU 1 Nov 25, 2021
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

37 Jan 01, 2023
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

SparkFun Electronics 102 Jan 05, 2023
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
OBBDetection: an oriented object detection toolbox modified from MMdetection

OBBDetection note: If you have questions or good suggestions, feel free to propose issues and contact me. introduction OBBDetection is an oriented obj

MIXIAOXIN_HO 3 Nov 11, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021