IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Related tags

Deep LearningIDM
Overview

Python >=3.7 PyTorch >=1.1

Intermediate Domain Module (IDM)

This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID, which is accepted by ICCV 2021 (Oral).

IDM achieves state-of-the-art performances on the unsupervised domain adaptation task for person re-ID.

Requirements

Installation

git clone https://github.com/SikaStar/IDM.git
cd IDM/idm/evaluation_metrics/rank_cylib && make all

Prepare Datasets

cd examples && mkdir data

Download the person re-ID datasets Market-1501, DukeMTMC-ReID, MSMT17, PersonX, and UnrealPerson. Then unzip them under the directory like

IDM/examples/data
├── dukemtmc
│   └── DukeMTMC-reID
├── market1501
│   └── Market-1501-v15.09.15
├── msmt17
│   └── MSMT17_V1
├── personx
│   └── PersonX
└── unreal
    ├── list_unreal_train.txt
    └── unreal_vX.Y

Prepare ImageNet Pre-trained Models for IBN-Net

When training with the backbone of IBN-ResNet, you need to download the ImageNet-pretrained model from this link and save it under the path of logs/pretrained/.

mkdir logs && cd logs
mkdir pretrained

The file tree should be

IDM/logs
└── pretrained
    └── resnet50_ibn_a.pth.tar

ImageNet-pretrained models for ResNet-50 will be automatically downloaded in the python script.

Training

We utilize 4 GTX-2080TI GPUs for training. Note that

  • The source and target domains are trained jointly.
  • For baseline methods, use -a resnet50 for the backbone of ResNet-50, and -a resnet_ibn50a for the backbone of IBN-ResNet.
  • For IDM, use -a resnet50_idm to insert IDM into the backbone of ResNet-50, and -a resnet_ibn50a_idm to insert IDM into the backbone of IBN-ResNet.
  • For strong baseline, use --use-xbm to implement XBM (a variant of Memory Bank).

Baseline Methods

To train the baseline methods in the paper, run commands like:

# Naive Baseline
CUDA_VISIBLE_DEVICES=0,1,2,3 sh scripts/run_naive_baseline.sh ${source} ${target} ${arch}

# Strong Baseline
CUDA_VISIBLE_DEVICES=0,1,2,3 sh scripts/run_strong_baseline.sh ${source} ${target} ${arch}

Some examples:

### market1501 -> dukemtmc ###

# ResNet-50
CUDA_VISIBLE_DEVICES=0,1,2,3 sh scripts/run_strong_baseline.sh market1501 dukemtmc resnet50 

# IBN-ResNet-50
CUDA_VISIBLE_DEVICES=0,1,2,3 sh scripts/run_strong_baseline.sh market1501 dukemtmc resnet_ibn50a

Training with IDM

To train the models with our IDM, run commands like:

# Naive Baseline + IDM
CUDA_VISIBLE_DEVICES=0,1,2,3 \
sh scripts/run_idm.sh ${source} ${target} ${arch} ${stage} ${mu1} ${mu2} ${mu3}

# Strong Baseline + IDM
CUDA_VISIBLE_DEVICES=0,1,2,3 \
sh scripts/run_idm_xbm.sh ${source} ${target} ${arch} ${stage} ${mu1} ${mu2} ${mu3}
  • Defaults: --stage 0 --mu1 0.7 --mu2 0.1 --mu3 1.0

Some examples:

### market1501 -> dukemtmc ###

# ResNet-50 + IDM
CUDA_VISIBLE_DEVICES=0,1,2,3 \
sh scripts/run_idm_xbm.sh market1501 dukemtmc resnet50_idm 0 0.7 0.1 1.0 

# IBN-ResNet-50 + IDM
CUDA_VISIBLE_DEVICES=0,1,2,3 \
sh scripts/run_idm_xbm.sh market1501 dukemtmc resnet_ibn50a_idm 0 0.7 0.1 1.0

Evaluation

We utilize 1 GTX-2080TI GPU for testing. Note that

  • use --dsbn for domain adaptive models, and add --test-source if you want to test on the source domain;
  • use -a resnet50 for the backbone of ResNet-50, and -a resnet_ibn50a for the backbone of IBN-ResNet.
  • use -a resnet50_idm for ResNet-50 + IDM, and -a resnet_ibn50a_idm for IBN-ResNet + IDM.

To evaluate the baseline model on the target-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python3 examples/test.py --dsbn -d ${dataset} -a ${arch} --resume ${resume} 

To evaluate the baseline model on the source-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python3 examples/test.py --dsbn --test-source -d ${dataset} -a ${arch} --resume ${resume} 

To evaluate the IDM model on the target-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python3 examples/test.py --dsbn-idm -d ${dataset} -a ${arch} --resume ${resume} --stage ${stage} 

To evaluate the IDM model on the source-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python3 examples/test.py --dsbn-idm --test-source -d ${dataset} -a ${arch} --resume ${resume} --stage ${stage} 

Some examples:

### market1501 -> dukemtmc ###

# evaluate the target domain "dukemtmc" on the strong baseline model
CUDA_VISIBLE_DEVICES=0 \
python3 examples/test.py --dsbn  -d dukemtmc -a resnet50 \
--resume logs/resnet50_strong_baseline/market1501-TO-dukemtmc/model_best.pth.tar 

# evaluate the source domain "market1501" on the strong baseline model
CUDA_VISIBLE_DEVICES=0 \
python3 examples/test.py --dsbn --test-source  -d market1501 -a resnet50 \
--resume logs/resnet50_strong_baseline/market1501-TO-dukemtmc/model_best.pth.tar 

# evaluate the target domain "dukemtmc" on the IDM model (after stage-0)
python3 examples/test.py --dsbn-idm  -d dukemtmc -a resnet50_idm \
--resume logs/resnet50_idm_xbm/market1501-TO-dukemtmc/model_best.pth.tar --stage 0

# evaluate the target domain "dukemtmc" on the IDM model (after stage-0)
python3 examples/test.py --dsbn-idm --test-source  -d market1501 -a resnet50_idm \
--resume logs/resnet50_idm_xbm/market1501-TO-dukemtmc/model_best.pth.tar --stage 0

Acknowledgement

Our code is based on MMT and SpCL. Thanks for Yixiao's wonderful works.

Citation

If you find our work is useful for your research, please kindly cite our paper

@inproceedings{dai2021idm,
  title={IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID},
  author={Dai, Yongxing and Liu, Jun and Sun, Yifan and Tong, Zekun and Zhang, Chi and Duan, Ling-Yu},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}

If you have any questions, please leave an issue or contact me: [email protected]

Owner
Yongxing Dai
I am now a fourth-year PhD student at National Engineering Lab for Video Technology in Peking University, Beijing, China
Yongxing Dai
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

THUML: Machine Learning Group @ THSS 149 Dec 19, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022