The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Overview

Hierarchical Token Semantic Audio Transformer

Introduction

The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection", in ICASSP 2022.

In this paper, we devise a model, HTS-AT, by combining a swin transformer with a token-semantic module and adapt it in to audio classification and sound event detection tasks. HTS-AT is an efficient and light-weight audio transformer with a hierarchical structure and has only 30 million parameters. It achieves new state-of-the-art (SOTA) results on AudioSet and ESC-50, and equals the SOTA on Speech Command V2. It also achieves better performance in event localization than the previous CNN-based models.

HTS-AT Architecture

Classification Results on AudioSet, ESC-50, and Speech Command V2 (mAP)

HTS-AT ClS Result

Localization/Detection Results on DESED dataset (F1-Score)

HTS-AT Localization Result

Getting Started

Install Requirments

pip install -r requirements.txt

Download and Processing Datasets

  • config.py
change the varible "dataset_path" to your audioset address
change the variable "desed_folder" to your DESED address
change the classes_num to 527
./create_index.sh # 
// remember to change the pathes in the script
// more information about this script is in https://github.com/qiuqiangkong/audioset_tagging_cnn

python main.py save_idc 
// count the number of samples in each class and save the npy files
Open the jupyter notebook at esc-50/prep_esc50.ipynb and process it
Open the jupyter notebook at scv2/prep_scv2.ipynb and process it
python conver_desed.py 
// will produce the npy data files

Set the Configuration File: config.py

The script config.py contains all configurations you need to assign to run your code. Please read the introduction comments in the file and change your settings. For the most important part: If you want to train/test your model on AudioSet, you need to set:

dataset_path = "your processed audioset folder"
dataset_type = "audioset"
balanced_data = True
loss_type = "clip_bce"
sample_rate = 32000
hop_size = 320 
classes_num = 527

If you want to train/test your model on ESC-50, you need to set:

dataset_path = "your processed ESC-50 folder"
dataset_type = "esc-50"
loss_type = "clip_ce"
sample_rate = 32000
hop_size = 320 
classes_num = 50

If you want to train/test your model on Speech Command V2, you need to set:

dataset_path = "your processed SCV2 folder"
dataset_type = "scv2"
loss_type = "clip_bce"
sample_rate = 16000
hop_size = 160
classes_num = 35

If you want to test your model on DESED, you need to set:

resume_checkpoint = "Your checkpoint on AudioSet"
heatmap_dir = "localization results output folder"
test_file = "output heatmap name"
fl_local = True
fl_dataset = "Your DESED npy file"

Train and Evaluation

Notice: Our model is run on DDP mode and requires at least two GPU cards. If you want to use a single GPU for training and evaluation, you need to mannually change sed_model.py and main.py

All scripts is run by main.py:

Train: CUDA_VISIBLE_DEVICES=1,2,3,4 python main.py train

Test: CUDA_VISIBLE_DEVICES=1,2,3,4 python main.py test

Ensemble Test: CUDA_VISIBLE_DEVICES=1,2,3,4 python main.py esm_test 
// See config.py for settings of ensemble testing

Weight Average: python main.py weight_average
// See config.py for settings of weight averaging

Localization on DESED

CUDA_VISIBLE_DEVICES=1,2,3,4 python main.py test
// make sure that fl_local=True in config.py
python fl_evaluate.py
// organize and gather the localization results
fl_evaluate_f1.ipynb
// Follow the notebook to produce the results

Model Checkpoints:

We provide the model checkpoints on three datasets (and additionally DESED dataset) in this link. Feel free to download and test it.

Citing

@inproceedings{htsat-ke2022,
  author = {Ke Chen and Xingjian Du and Bilei Zhu and Zejun Ma and Taylor Berg-Kirkpatrick and Shlomo Dubnov},
  title = {HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection},
  booktitle = {{ICASSP} 2022}
}

Our work is based on Swin Transformer, which is a famous image classification transformer model.

Owner
Knut(Ke) Chen
ORZ: { godfather: sweetdum, ufo: zgg, dragon sister: lzl, morning king: corner café }
Knut(Ke) Chen
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
Software & Hardware to do multi color printing with Sharpies

3D Print Colorizer is a combination of 3D printed parts and a Cura plugin which allows anyone with an Ender 3 like 3D printer to produce multi colored

343 Jan 06, 2023
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
This is a beginner-friendly repo to make a collection of some unique and awesome projects. Everyone in the community can benefit & get inspired by the amazing projects present over here.

Awesome-Projects-Collection Quality over Quantity :) What to do? Add some unique and amazing projects as per your favourite tech stack for the communi

Rohan Sharma 178 Jan 01, 2023
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021