[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

Overview

CPT: Efficient Deep Neural Network Training via Cyclic Precision

Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

Accepted at ICLR 2021 (Spotlight) [Paper Link].

Overview

Low-precision deep neural network (DNN) training has gained tremendous attention as reducing precision is one of the most effective knobs for boosting DNNs’ training time/energy efficiency. In this paper, we attempt to explore low-precision training from a new perspective as inspired by recent findings in understanding DNN training: we conjecture that DNNs’ precision might have a similar effect as the learning rate during DNN training, and advocate dynamic precision along the training trajectory for further boosting the time/energy efficiency of DNN training. Specifically, we propose Cyclic Precision Training (CPT) to cyclically vary the precision between two boundary values to balance the coarse-grained exploration of low precision and fine-grained optimization of high precision. Through experiments and visualization we show that CPT helps to (1) converge to a wider minima with a lower generalization error and (2) reduce training variance, which opens up a new design knob for simultaneously improving the optimization and efficiency of DNN training.

Experimental Results

We evaluate CPT on eleven models & five datasets (i.e., ResNet-38/74/110/152/164/MobileNetV2 on CIFAR-10/100, ResNet-18/34/50 on ImageNet, Transformer on WikiText-103, LSTM on PTB). Please refer to our paper for more results.

Results on CIFAR-100

  • Test accuracy vs. training computational cost

  • Loss landscape visualization

Results on ImageNet

  • Accuracy - training efficiency trade-off

  • Boosting optimality

Results on WikiText-103 and PTB

Code Usage

cpt_cifar and cpt_imagenet are the codes customized for CIFAR-10/100 and ImageNet, respectively, with a similar code structure.

Prerequisites

See env.yml for the complete conda environment. Create a new conda environment:

conda env create -f env.yml
conda activate pytorch

Training on CIFAR-10/100 with CPT

In addition to the commonly considered args, e.g., the target network, dataset, and data path via --arch, --dataset, and --datadir, respectively, you also need to: (1) enable cyclic precision training via --is_cyclic_precision; (2) specify the precision bounds for both forward (weights and activations) and backward (gradients and errors) with --cyclic_num_bits_schedule and --cyclic_num_grad_bits_schedule, respectively (note that in CPT, we adopt a constant precision during backward for more stable training process as analyzed in our appendix); (3) specify the number of cyclic periods via --num_cyclic_period which can be set as 32 in all experiments and more ablation studies can be found in Sec. 4.3 of our paper.

  • Example: Training ResNet-74 on CIFAR-100 with CPT (3~8-bit forward, 8-bit backward, and a cyclic periods of 32).
cd cpt_cifar
python train.py --save_folder ./logs --arch cifar100_resnet_74 --workers 4 --dataset cifar100 --datadir path-to-cifar100 --is_cyclic_precision --cyclic_num_bits_schedule 3 8 --cyclic_num_grad_bits_schedule 8 8 --num_cyclic_period 32

We also integrate SWA in our code although it is not used in the reported results of our paper.

Training on ImageNet with CPT

The args for ImageNet experiments are similar with the ones on CIFAR-10/100.

  • Example: Training ResNet-34 on ImageNet with CPT (3~8-bit forward, 8-bit backward, and a cyclic periods of 32).
cd cpt_imagenet
python train.py --save_folder ./logs --arch resnet34 --warm_up --datadir PATH_TO_IMAGENET --is_cyclic_precision --cyclic_num_bits_schedule 3 8 --cyclic_num_grad_bits_schedule 8 8 --num_cyclic_period 32 --automatic_resume

Citation

@article{fu2021cpt,
  title={CPT: Efficient Deep Neural Network Training via Cyclic Precision},
  author={Fu, Yonggan and Guo, Han and Li, Meng and Yang, Xin and Ding, Yining and Chandra, Vikas and Lin, Yingyan},
  journal={arXiv preprint arXiv:2101.09868},
  year={2021}
}

Our Related Work

Please also check our work on how to fractionally squeeze out more training cost savings from the most redundant bit level, progressively along the training trajectory and dynamically per input:

Yonggan Fu, Haoran You, Yang Zhao, Yue Wang, Chaojian Li, Kailash Gopalakrishnan, Zhangyang Wang, Yingyan Lin. "FracTrain: Fractionally Squeezing Bit Savings Both Temporally and Spatially for Efficient DNN Training". NeurIPS, 2020. [Paper Link] [Code]

Owner
Efficient and Intelligent Computing Lab
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022