Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Overview

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition

License: MIT stars GitHub issues GitHub closed issues GitHub repo size QUT Centre for Robotics

PWC PWC PWC PWC PWC PWC

This repository contains code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

The article can be found on arXiv and the official proceedings.

Patch-NetVLAD method diagram

License + attribution/citation

When using code within this repository, please refer the following paper in your publications:

@inproceedings{hausler2021patchnetvlad,
  title={Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition},
  author={Hausler, Stephen and Garg, Sourav and Xu, Ming and Milford, Michael and Fischer, Tobias},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={14141--14152},
  year={2021}
}

The code is licensed under the MIT License.

Installation

We recommend using conda (or better: mamba) to install all dependencies. If you have not yet installed conda/mamba, please download and install mambaforge.

conda create -n patchnetvlad python=3.8 numpy pytorch-gpu torchvision natsort tqdm opencv pillow scikit-learn faiss matplotlib-base -c conda-forge

conda activate patchnetvlad

We provide several pre-trained models and configuration files. The pre-trained models will be downloaded automatically into the pretrained_models the first time feature extraction is performed.

Alternatively, you can manually download the pre-trained models into a folder of your choice; click to expand if you want to do so.

We recommend downloading the models into the pretrained_models folder (which is setup in the config files within the configs directory):

# Note: the pre-trained models will be downloaded automatically the first time feature extraction is performed
# the steps below are optional!

# You can use the download script which automatically downloads the models:
python ./download_models.py

# Manual download:
cd pretrained_models
wget -O mapillary_WPCA128.pth.tar https://cloudstor.aarnet.edu.au/plus/s/vvr0jizjti0z2LR/download
wget -O mapillary_WPCA512.pth.tar https://cloudstor.aarnet.edu.au/plus/s/DFxbGgFwh1y1wAz/download
wget -O mapillary_WPCA4096.pth.tar https://cloudstor.aarnet.edu.au/plus/s/ZgW7DMEpeS47ELI/download
wget -O pittsburgh_WPCA128.pth.tar https://cloudstor.aarnet.edu.au/plus/s/2ORvaCckitjz4Sd/download
wget -O pittsburgh_WPCA512.pth.tar https://cloudstor.aarnet.edu.au/plus/s/WKl45MoboSyB4SH/download
wget -O pittsburgh_WPCA4096.pth.tar https://cloudstor.aarnet.edu.au/plus/s/1aoTGbFjsekeKlB/download

If you want to use the shortcuts patchnetvlad-match-two, patchnetvlad-feature-match and patchnetvlad-feature-extract, you also need to run (which also lets you use Patch-NetVLAD in a modular way):

pip3 install --no-deps -e .

Quick start

Feature extraction

Replace performance.ini with speed.ini or storage.ini if you want, and adapt the dataset paths - examples are given for the Pittsburgh30k dataset (simply replace pitts30k with tokyo247 or nordland for these datasets).

python feature_extract.py \
  --config_path patchnetvlad/configs/performance.ini \
  --dataset_file_path=pitts30k_imageNames_index.txt \
  --dataset_root_dir=/path/to/your/pitts/dataset \
  --output_features_dir patchnetvlad/output_features/pitts30k_index

Repeat for the query images by replacing _index with _query. Note that you have to adapt dataset_root_dir.

Feature matching (dataset)

python feature_match.py \
  --config_path patchnetvlad/configs/performance.ini \
  --dataset_root_dir=/path/to/your/pitts/dataset \
  --query_file_path=pitts30k_imageNames_query.txt \
  --index_file_path=pitts30k_imageNames_index.txt \
  --query_input_features_dir patchnetvlad/output_features/pitts30k_query \
  --index_input_features_dir patchnetvlad/output_features/pitts30k_index \
  --ground_truth_path patchnetvlad/dataset_gt_files/pitts30k_test.npz \
  --result_save_folder patchnetvlad/results/pitts30k

Note that providing ground_truth_path is optional.

This will create three output files in the folder specified by result_save_folder:

  • recalls.txt with a plain text output (only if ground_truth_path is specified)
  • NetVLAD_predictions.txt with top 100 reference images for each query images obtained using "vanilla" NetVLAD in Kapture format
  • PatchNetVLAD_predictions.txt with top 100 reference images from above re-ranked by Patch-NetVLAD, again in Kapture format

Feature matching (two files)

python match_two.py \
--config_path patchnetvlad/configs/performance.ini \
--first_im_path=patchnetvlad/example_images/tokyo_query.jpg \
--second_im_path=patchnetvlad/example_images/tokyo_db.png

We provide the match_two.py script which computes the Patch-NetVLAD features for two given images and then determines the local feature matching between these images. While we provide example images, any image pair can be used.

The script will print a score value as an output, where a larger score indicates more similar images and a lower score means dissimilar images. The function also outputs a matching figure, showing the patch correspondances (after RANSAC) between the two images. The figure is saved as results/patchMatchings.png.

FAQ

Patch-NetVLAD qualitative results

How to Create New Ground Truth Files

We provide three ready-to-go ground truth files in the dataset_gt_files folder, however, for evaluation on other datasets you will need to create your own .npz ground truth data files. Each .npz stores three variables: utmQ (a numpy array of floats), utmDb (a numpy array of floats) and posDistThr (a scalar numpy float).

Each successive element within utmQ and utmDb needs to correspond to the corresponding row of the image list file. posDistThr is the ground truth tolerance value (typically in meters).

The following mock example details the steps required to create a new ground truth file:

  1. Collect GPS data for your query and database traverses and convert to utm format. Ensure the data is sampled at the same rate as your images.
  2. Select your own choice of posDistThr value.
  3. Save these variables using Numpy, such as this line of code: np.savez('dataset_gt_files/my_dataset.npz', utmQ=my_utmQ, utmDb=my_utmDb, posDistThr=my_posDistThr)

Acknowledgements

We would like to thank Gustavo Carneiro, Niko Suenderhauf and Mark Zolotas for their valuable comments in preparing this paper. This work received funding from the Australian Government, via grant AUSMURIB000001 associated with ONR MURI grant N00014-19-1-2571. The authors acknowledge continued support from the Queensland University of Technology (QUT) through the Centre for Robotics.

Related works

Please check out this collection of related works on place recognition.

Comments
  • Fixing val.py incorrect recalls issue #43

    Fixing val.py incorrect recalls issue #43

    Made changes to val.py that should fix the indices issue that was causing low reported recalls for mapillary validation on the cph and sf datasets. Without PCA, the recalls with NetVLAD (with the mapillary trained model) are now: 0.495, 0.65, 0.718, 0.77, 0.83, 0.868.

    opened by StephenHausler 10
  • About the result on Mapillary

    About the result on Mapillary

    Thank you for this nice code base and paper. I am trying to reproduce the result on Mapillary following the training from scratch instruction. However, after training for multiple weeks, the result is still extremely low: image

    Is the result before PCAW supposed to be like this? Or maybe there is something wrong? I just follow the instruction: python train.py
    --config_path patchnetvlad/configs/train.ini
    --cache_path=/path/to/your/desired/cache/folder
    --save_path=/path/to/your/desired/checkpoint/save/folder
    --dataset_root_dir=/path/to/your/mapillary/dataset And there is no error reported. Thank you so much for your time. Looking forward to hearing from you.

    opened by Jeff-Zilence 9
  • Downloading Nordland dataset

    Downloading Nordland dataset

    Hi, will you release your version of the Nordland dataset? It would be great to have the chance to download the dataset directly, as it would avoid possible inconsistencies. Also, there shouldn't be any legal issue given that it is licensed under Creative Commons :-)

    opened by gmberton 6
  • permission for loading the model [certificate verify failed]

    permission for loading the model [certificate verify failed]

    hi :) I installed all packages and tried to run "match_two.py" file. for loading Auto-download pretrained models, it asked me so I type "YES" but i got a error message. [certificate verify failed]

    I am using Window PC, please let me know how to solve this. thanks

    image

    opened by jaaaaaang 6
  • Reproduce results of NetVLAD on RobotCar Seasons v2

    Reproduce results of NetVLAD on RobotCar Seasons v2

    @Tobias-Fischer @oravus Hi,first,I really appreciate for your work. I'm trying to reproduce results of NetVLAD on RobotCar Seasons v2 in the Table 1 and Supplementary Table 1,but encountered some problems.I have extracted the global descriptor using Netvlad with netvlad_extract.ini.May I ask if it is convenient to supplement the subsequent code to facilitate the reoccurrence work?Perhaps it would be better to have detailed instructions. I am always looking forward to your kind response. Best regards.

    opened by MAX-OTW 5
  • question about training loss

    question about training loss

    Hi, I really appreciate for the work! It is helpful for me to try it with your instructions. But I have a question about training. I try to retrain the network (with original Vgg16 backbone or change it to ResNet18, cropped it properly and maintain most of the parameters as the pretrained weights). I found that the loss went down rapidly at the first epoch and almost reach to 0.00. Would you describe the change of your loss when you train this network? Thank you very much!

    Best regards

    opened by LyyyyyyyN 5
  • how to use pool=patchnetvlad to train the network

    how to use pool=patchnetvlad to train the network

    Dear,

    Thank you for the great job!

    I got a question about how to use the output of patchnetvlad to train the network while vlad_local and vlad_global are generated at the same time. is it OK to use the vlad_global feature to estimate the triplet loss?

    Best, Qiang

    opened by zhaiqx 5
  • Question about “posDistThr” of the Nordland dataset

    Question about “posDistThr” of the Nordland dataset

    Hi, thanks for your work. I have a question about “posDistThr” of Nordland dataset. This repository sets the utm coordinate of i-th frame to (i,i) in the Nordland.npz file, which allows us to have a consistent function for evaluating [email protected] for all datasets. It's great! The tolerance for Nordland dataset is 10 frames in the Patch-NetVLAD paper. However, the radius of the first frame (0,0) to the 11-th frame (10,10) is 10sqrt(2) rather than 10. The “posDistThr” is set to 10 in Nordland.npz file in this repository. I have wrote a script to calculate [email protected] on Nordland (tolerance is 2 frames). The result is consistent with setting the “posDistThr” to 2sqrt(2) rather than 2.

    opened by Lu-Feng 4
  • Reproduce the results of DELG in the paper

    Reproduce the results of DELG in the paper

    Hi, thank you for sharing this great work. In the official paper, DELG achieves the top performance on some datasets. May I know how to reproduce those results of DELG? Do you use the pre-trained model or fine-tune it on Pitts30k/MSLS?

    opened by hellocasper 4
  • Incorrect Aachen Day-Night result

    Incorrect Aachen Day-Night result

    Hi, I tried to use your pretrained pittsburgh_WPCA4096 model to test on Aachen Day-Night dataset, but got totally incorrect result. here is my complete process.

    1. generate Aachen_db_path.txt and Aachen_query_path.txt

    2. run the feature_extract.py for db and query images use following two commands.

    python feature_extract.py \
      --config_path patchnetvlad/configs/speed.ini \
      --dataset_file_path=Aachen_db_path.txt \
      --output_features_dir patchnetvlad/output_features/aachen_index
    
    python feature_extract.py \
      --config_path patchnetvlad/configs/speed.ini \
      --dataset_file_path=Aachen_query_path.txt \
      --output_features_dir patchnetvlad/output_features/aachen_query
    
    1. run the 'feture_match.py' for feature matching without providing ground_truth_path
    python feature_match.py \
      --config_path patchnetvlad/configs/speed.ini \
      --query_file_path=Aachen_query_path.txt \
      --index_file_path=Aachen_db_path.txt \
      --query_input_features_dir patchnetvlad/output_features/aachen_query \
      --index_input_features_dir patchnetvlad/output_features/aachen_index \
      --result_save_folder patchnetvlad/results/aachen_subset
    
    1. then process PatchNetVLAD_predictions.txt, for each query image it output top 100 reference images. I just used the pose of top1 reference image as the estimated pose of each query image and post the result to benchmark, but got totally wrong result. here is the result:

    image

    I want to know what's wrong with my steps and why it outputs such unacceptable results. Is the model version that I used is wrong? Or have you test your models on Aachen dataset, if you did, could you please provide the result ?

    opened by HeartbreakSurvivor 4
  • About RobotCar v2 results

    About RobotCar v2 results

    Hi, I really appreciate for your work. I'm trying to reproduce your result on RobotCar seasons v2 dataset and encountered some problems. Which dataset split is used in the Tables 1 and 2 of the main paper, test or train? Besides, are these results integrate ALL conditions including day and night?

    I noticed that the Suppl. Table 1. reports results for each condition obtained from the training split. But when I tried to summary these results in Suppl. Table 1. using statistics on the train query set, I failed to obtain the results in the Tables 1 of the main paper. So I'm a bit confused about the dataset settings.

    I am always looking forward to your kind response.

    Best regards,

    opened by RuotongWANG 4
  • Can't reproduce Robotcar results

    Can't reproduce Robotcar results

    Hi, I tried to reproduce your result on Robotcar Seasons V2 test set by submitting to the challenge submission server. I used the released performance-focused model which is pre-trained on MSLS dataset, but I got this incorrect result: image And I tried the model pre-trained on Pitts30k, the results are not correct either. image Besides, the results on other datasets is normal. Is the model version that I used is wrong? Could you possibly release the model state that achieves the results on Robotcat dataset shown in the paper? Or would you provide the results on test set split by conditions like the Supplementary Table 1? Thank you so much.

    Best regards,

    opened by RuotongWANG 11
  • Train on custom dataset

    Train on custom dataset

    Hi, I really appreciate for the work you've done. I wondered if the training code will be released, which can be used to train our custom dataset, thanks.

    Best regards.

    opened by JiananZhao0224 14
Releases(v0.1.6)
  • v0.1.6(Nov 11, 2021)

    Training code

    This release adds code to train NetVLAD on the Mapillary dataset + PCAing models using either Mapillary dataset or Pittsburgh (https://github.com/QVPR/Patch-NetVLAD/pull/20 and https://github.com/QVPR/Patch-NetVLAD/pull/39)

    Bugfixes

    • Support for Multi-GPU inference (https://github.com/QVPR/Patch-NetVLAD/pull/22 - thanks @michaelschleiss)
    • Fix in keypoint positions (https://github.com/QVPR/Patch-NetVLAD/commit/6005b555cf05414afac3f3c0203e22a249d05b91)
    • Fix recalls when validating on Mapillary dataset (https://github.com/QVPR/Patch-NetVLAD/pull/44)

    Full Changelog: https://github.com/QVPR/Patch-NetVLAD/compare/v0.1.5...v0.1.6

    Source code(tar.gz)
    Source code(zip)
  • v0.1.5(Jun 22, 2021)

  • v0.1.4(Jun 11, 2021)

  • v0.1.2(Jun 2, 2021)

  • v0.1.1(Jun 2, 2021)

Owner
QVPR
QVPR
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
Automatically align face images 🙃→🙂. Can also do windowing and warping.

Automatic Face Alignment (AFA) Carl M. Gaspar & Oliver G.B. Garrod You have lots of photos of faces like this: But you want to line up all of the face

Carl Michael Gaspar 15 Dec 12, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 06, 2023
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

TFLearn 9.6k Jan 02, 2023
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
Yggdrasil - A simplistic bot designed to streamline your server experience

Ygggdrasil A simplistic bot designed to streamline your server experience. Desig

Sntx_ 1 Dec 14, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021