Real-Time Social Distance Monitoring tool using Computer Vision

Overview

Social Distance Detector

A Real-Time Social Distance Monitoring Tool

Project Status: Active

Table of Contents

Motivation

The current COVID-19 pandemic is showing negative effects on human health as well as on social and economic life. It is a critical and challenging task to revive public life while minimizing the risk of infection. Reducing interactions between people by social distancing is an effective and prevalent measure to reduce the risk of infection and spread of the virus within a community. And so, this project will help to monitor that.

YOLO Theory

YOLO or You Only Look Once is an algorithm that uses neural networks to provide real-time object detection. Object detection in YOLO is done as a regression problem and provides the class probabilities of the detected images. As the name suggests, the algorithm requires only a single forward propagation through a neural network to detect objects.

Detection Output

animated


A single frame from Video 1

Detection Output 1

A single frame from Video 2

Detection Output 2

Tech Stack

  • Python

Functionalities

  • Detect people who are practicing social distancing and those who are not.
  • Draw a green coloured box around those who are practicing social distancing and red for those who are not.
  • Display the following information :
    • The threshold values used for detection.
    • Number of people recognized.
    • Number of people who are practicing social distancing.
    • Number of people who are not practicing social distancing.

To Do and Further Improvements

  • Using YOLO for Image Detection
  • Calculate the distance between people and categorise them as safe and unsafe
  • Draw green coloured boxes for those who follow social distancing and red for those who don't.
  • Detect and draw boxes for image, video and live stream.
  • Adding Birds-Eye View for the Video
  • Work on the minimum pixel distance for different media.
  • Assign a score at the end of the video/stream for every person based on the time they were not socially distanced.

Requirements

The following dependencies and modules(python) are required, to run this locally

  • os, sys, argparse
  • math
  • mimetypes
  • numpy==1.21.2
  • opencv-python==4.5.3.56

To install the requirements run:

$ pip install -r requirements.txt

Run Locally

  • Clone the GitHub repository
$ git clone git@github.com:Pranav1007/Social-Distance-Detector.git
  • Move to the Project Directory
$ cd Social-Distance-Detector
  • Create a Virtual Environment (Optional)

    • Install Virtualenv using pip (If it is not installed)
     $ pip install virtualenv
    • Create the Virtual Environment
    $ virtualenv sdd
    • Activate the Virtual Environment

      • In MAC OS/Linux
      $ source sdd/bin/activate
      • In Windows
      $ source sdd\Scripts\activate
  • Install the requirements

(sdd) $ pip install -r requirements.txt
  • Run the python script run.py along with the appropriate arguements
(sdd) $ python3 run.py -m v -p media/test.mp4
  • Usage
"""
    Usage:
      usage: run.py [-h] [-m MEDIA] [-p PATH]

    optional arguements:
      -h --help                 Show this screen and exit.
      -m MEDIA --media MEDIA    Media Type (image(or i), video(or v), webcam(or w))
      -p PATH --path PATH       Path of the Media File (For webcam enter any character)
"""
  • Other options to Edit
   """
       You can go to the utilities/config.py and change the threshold values based on the video and system requirements.
   """
   # If you want to use GPU:
   Set USE_GPU = True
   # If you want to increase or decrease the minimum threshold distance
   Modify the DIST_THRES value
   # If you want to change the Non Maximum Supression Threshold or Confidence Threshold
   Modify the NMS_THRESH or CONF_THRESH values respectively
  • Dectivate the Virtual Environment (after you are done)
(sdd) $ deactivate

License

License
This project is under the Apache-2.0 License License. See LICENSE for Details.

Contributors


Pranav B Kashyap


Prakhar Singh


Avi Tewari

Owner
Pranav B
Pranav B
Code Repo for the ACL21 paper "Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning"

Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning This is the Github repository of our paper, "Common S

INK Lab @ USC 19 Nov 30, 2022
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
TAPEX: Table Pre-training via Learning a Neural SQL Executor

TAPEX: Table Pre-training via Learning a Neural SQL Executor The official repository which contains the code and pre-trained models for our paper TAPE

Microsoft 157 Dec 28, 2022
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
A Kaggle competition: discriminate gender based on handwriting

Gender discrimination based on handwriting See http://fastml.com/gender-discrimination/ for description. prep_data.py - a first step chunk_by_authors.

Zygmunt Zając 22 Jul 20, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
LETR: Line Segment Detection Using Transformers without Edges

LETR: Line Segment Detection Using Transformers without Edges Introduction This repository contains the official code and pretrained models for Line S

mlpc-ucsd 157 Jan 06, 2023
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022