This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Overview

Black-Box-Defense

This repository contains the code and models necessary to replicate the results of our recent paper:

How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective
Yimeng Zhang, Yuguang Yao, Jinghan Jia, Jinfeng Yi, Mingyi Hong, Shiyu Chang, Sijia Liu

ICLR'22 (Spotlight)
Paper: https://openreview.net/forum?id=W9G_ImpHlQd

We formulate the problem of black-box defense (as shown in Fig. 1) and investigate it through the lens of zeroth-order (ZO) optimization. Different from existing work, our paper aims to design the restriction-least black-box defense and our formulation is built upon a query-based black-box setting, which avoids the use of surrogate models.

We propose a novel black-box defense approach, ZO AutoEncoder-based Denoised Smoothing (ZO-AE-DS) as shown in Fig. 3, which is able to tackle the challenge of ZO optimization in high dimensions and convert a pre-trained non-robust ML model into a certifiably robust model using only function queries.

To train ZO-AE-DS, we adopt a two-stage training protocol. 1) White-box pre-training on AE: At the first stage, we pre-train the AE model by calling a standard FO optimizer (e.g., Adam) to minimize the reconstruction loss. The resulting AE will be used as the initialization of the second-stage training. We remark that the denoising model can also be pre-trained. However, such a pre-training could hamper optimization, i.e., making the second-stage training over θ easily trapped at a poor local optima. 2) End-to-end training: At the second stage, we keep the pre-trained decoder intact and merge it into the black-box system.

The performance comparisons with baselines are shown in Table 2.

Overview of the Repository

Our code is based on the open source codes of Salmanet al.(2020). Our repo contains the code for our experiments on MNIST, CIFAR-10, STL-10, and Restricted ImageNet.

Let us dive into the files:

  1. train_classifier.py: a generic script for training ImageNet/Cifar-10 classifiers, with Gaussian agumentation option, achieving SOTA.
  2. AE_DS_train.py: the main code of our paper which is used to train the different AE-DS/DS model with FO/ZO optimization methods used in our paper.
  3. AE_DS_certify.py: Given a pretrained smoothed classifier, returns a certified L2-radius for each data point in a given dataset using the algorithm of Cohen et al (2019).
  4. architectures.py: an entry point for specifying which model architecture to use per classifiers, denoisers and AutoEncoders.
  5. archs/ contains the network architecture files.
  6. trained_models/ contains the checkpoints of AE-DS and base classifiers.

Getting Started

  1. git clone https://github.com/damon-demon/Black-Box-Defense.git

  2. Install dependencies:

    conda create -n Black_Box_Defense python=3.6
    conda activate Black_Box_Defense
    conda install numpy matplotlib pandas seaborn scipy==1.1.0
    conda install pytorch torchvision cudatoolkit=10.0 -c pytorch # for Linux
    
  3. Train a AE-DS model using Coordinate-Wise Gradient Estimation (CGE) for ZO optimization on CIFAR-10 Dataset.

    python3 AE_DS_train.py --model_type AE_DS --lr 1e-3 --outdir ZO_AE_DS_lr-3_q192_Coord --dataset cifar10 --arch cifar_dncnn --encoder_arch cifar_encoder_192_24 --decoder_arch cifar_decoder_192_24 --epochs 200 --train_method whole --optimization_method ZO --zo_method CGE --pretrained-denoiser $pretrained_denoiser  --pretrained-encoder $pretrained_encoder --pretrained-decoder $pretrained_decoder --classifier $pretrained_clf --noise_sd 0.25  --q 192
    
  4. Certify the robustness of a AE-DS model on CIFAR-10 dataset.

    python3 AE_DS_certify.py --dataset cifar10 --arch cifar_dncnn --encoder_arch cifar_encoder_192_24 --decoder_arch cifar_decoder_192_24 --base_classifier $pretrained_base_classifier --pretrained_denoiser $pretrained_denoiser  --pretrained-encoder $pretrained_encoder --pretrained-decoder $pretrained_decoder --sigma 0.25 --outfile ZO_AE_DS_lr-3_q192_Coord_NoSkip_CF_result/sigma_0.25 --batch 400 --N 10000 --skip 1 --l2radius 0.25
    

Check the results in ZO_AE_DS_lr-3_q192_Coord_NoSkip_CF_result/sigma_0.25.

Citation

@inproceedings{
zhang2022how,
title={How to Robustify Black-Box {ML} Models? A Zeroth-Order Optimization Perspective},
author={Yimeng Zhang and Yuguang Yao and Jinghan Jia and Jinfeng Yi and Mingyi Hong and Shiyu Chang and Sijia Liu},
booktitle={International Conference on Learning Representations},
year={2022},
url={ https://openreview.net/forum?id=W9G_ImpHlQd }
}

Contact

For more information, contact Yimeng(Damon) Zhang with any additional questions or comments.

Owner
OPTML Group
OPtimization and Trustworthy Machine Learning Group @ Michigan State University
OPTML Group
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
A hue shift helper for OBS

obs-hue-shift A hue shift helper for OBS This is a repo based on the really nice script Hegemege made. The original script can be found https://gist.g

Alexis Tyler 1 Jan 10, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022