External Attention Network

Related tags

Deep Learning-EANet
Overview

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks

paper : https://arxiv.org/abs/2105.02358

Jittor code will come soon

Pascal VOC test result link

Other implementation:

Pytorch : https://github.com/xmu-xiaoma666/External-Attention-pytorch

TODO

  • release jittor semantic segmentation code and checkpoint.
  • release torch semantic segmentation code and checkpoint.
  • release point cloud related code and checkpoint.
  • merge segmentation module into mmsegmentation to reproduce the ADE20K and Cityscapes dataset results.
  • merge PyTorch-StudioGAN to reproduce the GAN results.

Acknowledgments

We would like to sincerely thank HamNet_seg, EMANet_seg, openseg, T2T-ViT, mmsegmentation and PyTorch-StudioGAN for their awesome released code.

Astract

Attention mechanisms, especially self-attention, play an increasingly important role in deep feature representation in visual tasks. Self-attention updates the feature at each position by computing a weighted sum of features using pair-wise affinities across all positions to capture long-range dependency within a single sample. However, self-attention has a quadratic complexity and ignores potential correlation between different samples. This paper proposes a novel attention mechanism which we call external attention, based on two external, small, learnable, and shared memories, which can be implemented easily by simply using two cascaded linear layers and two normalization layers; it conveniently replaces self-attention in existing popular architectures. External attention has linear complexity and implicitly considers the correlations between all samples. Extensive experiments on image classification, semantic segmentation, image generation, point cloud classification and point cloud segmentation tasks reveal that our method provides comparable or superior performance to the self-attention mechanism and some of its variants, with much lower computational and memory costs.

Jittor

Jittor is a high-performance deep learning framework which is easy to learn and use. It provides interfaces like Pytorch.

You can learn how to use Jittor in following links:

Jittor homepage: https://cg.cs.tsinghua.edu.cn/jittor/

Jittor github: https://github.com/Jittor/jittor

If you has any questions about Jittor, you can ask in Jittor developer QQ Group: 761222083

Citation

If it is helpful for your work, please cite this paper:

@misc{guo2021attention,
      title={Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks}, 
      author={Meng-Hao Guo and Zheng-Ning Liu and Tai-Jiang Mu and Shi-Min Hu},
      year={2021},
      eprint={2105.02358},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
MenghaoGuo
First-year Ph.D candidate at G2 group, Tsinghua University.
MenghaoGuo
Neural Cellular Automata + CLIP

🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
πŸ€– Project template for your next awesome AI project. 🦾

πŸ€– AI Awesome Project Template πŸ‘‹ Template author You may want to adjust badge links in a README.md file. πŸ’Ž Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022