Certified Patch Robustness via Smoothed Vision Transformers

Overview

Certified Patch Robustness via Smoothed Vision Transformers

This repository contains the code for replicating the results of our paper:

Certified Patch Robustness via Smoothed Vision Transformers
Hadi Salman*, Saachi Jain*, Eric Wong*, Aleksander Madry

Paper
Blog post Part I.
Blog post Part II.

    @article{salman2021certified,
        title={Certified Patch Robustness via Smoothed Vision Transformers},
        author={Hadi Salman and Saachi Jain and Eric Wong and Aleksander Madry},
        booktitle={ArXiv preprint arXiv:2110.07719},
        year={2021}
    }

Getting started

Our code relies on the MadryLab public robustness library, which will be automatically installed when you follow the instructions below.

  1. Clone our repo: git clone https://github.mit.edu/hady/smoothed-vit

  2. Install dependencies:

    conda create -n smoothvit python=3.8
    conda activate smoothvit
    pip install -r requirements.txt
    

Full pipeline for building smoothed ViTs.

Now, we will walk you through the steps to create a smoothed ViT on the CIFAR-10 dataset. Similar steps can be followed for other datasets.

The entry point of our code is main.py (see the file for a full description of arguments).

First we will train the base classifier with ablations as data augmentation. Then we will apply derandomizd smoothing to build a smoothed version of the model which is certifiably robust.

Training the base classifier

The first step is to train the base classifier (here a ViT-Tiny) with ablations.

python src/main.py \
      --dataset cifar10 \
      --data /tmp \
      --arch deit_tiny_patch16_224 \
      --pytorch-pretrained \
      --out-dir OUTDIR \
      --exp-name demo \
      --epochs 30 \
      --lr 0.01 \
      --step-lr 10 \
      --batch-size 128 \
      --weight-decay 5e-4 \
      --adv-train 0 \
      --freeze-level -1 \
      --drop-tokens \
      --cifar-preprocess-type simple224 \
      --ablate-input \
      --ablation-type col \
      --ablation-size 4

Once training is done, the mode is saved in OUTDIR/demo/.

Certifying the smoothed classifier

Now we are ready to apply derandomized smoothing to obtain certificates for each datapoint against adversarial patches. To do so, simply run:

python src/main.py \
      --dataset cifar10 \
      --data /tmp \
      --arch deit_tiny_patch16_224 \
      --out-dir OUTDIR \
      --exp-name demo \
      --batch-size 128 \
      --adv-train 0 \
      --freeze-level -1 \
      --drop-tokens \
      --cifar-preprocess-type simple224 \
      --resume \
      --eval-only 1 \
      --certify \
      --certify-out-dir OUTDIR_CERT \
      --certify-mode col \
      --certify-ablation-size 4 \
      --certify-patch-size 5

This will calculate the standard and certified accuracies of the smoothed model. The results will be dumped into OUTDIR_CERT/demo/.

That's it! Now you can replicate all the results of our paper.

Download our ImageNet models

If you find our pretrained models useful, please consider citing our work.

Models trained with column ablations

Model Ablation Size = 19
ResNet-18 LINK
ResNet-50 LINK
WRN-101-2 LINK
ViT-T LINK
ViT-S LINK
ViT-B LINK

We have uploaded the most important models. If you need any other model (for the sweeps for example) please let us know and we are happy to provide!

Maintainers

Owner
Madry Lab
Towards a Principled Science of Deep Learning
Madry Lab
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
Finetune SSL models for MOS prediction

Finetune SSL models for MOS prediction This is code for our paper under review for ICASSP 2022: "Generalization Ability of MOS Prediction Networks" Er

Yamagishi and Echizen Laboratories, National Institute of Informatics 32 Nov 22, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022
[Pedestron] Generalizable Pedestrian Detection: The Elephant In The Room. @ CVPR2021

Pedestron Pedestron is a MMdetection based repository, that focuses on the advancement of research on pedestrian detection. We provide a list of detec

Irtiza Hasan 594 Jan 05, 2023
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Adversarial Neuron Pruning Purifies Backdoored Deep Models Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongx

Dongxian Wu 31 Dec 11, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022