Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

Related tags

Deep LearningCoMIR
Overview

License

CoMIR: Contrastive Multimodal Image Representation for Registration Framework

🖼 Registration of images in different modalities with Deep Learning 🤖

Nicolas Pielawski, Elisabeth Wetzer, Johan Öfverstedt, Jiahao Lu, Carolina Wählby, Joakim Lindblad and Nataša Sladoje

Code of the NeurIPS 2020 paper: CoMIR: Contrastive Multimodal Image Representation for Registration

Table of Contents

Introduction

Image registration is the process by which multiple images are aligned in the same coordinate system. This is useful to extract more information than by using each individual images. We perform rigid multimodal image registration, where we succesfully align images from different microscopes, even though the information in each image is completely different.

Here are three registrations of images coming from two different microscopes (Bright-Field and Second-Harmonic Generation) as an example:

This repository gives you access to the code necessary to:

  • Train a Neural Network for converting images in a common latent space.
  • Register images that were converted in the common latent space.

How does it work?

We combined a state-of-the-art artificial neural network (tiramisu) to transform the input images into a latent space representation, which we baptized CoMIR. The CoMIRs are crafted such that they can be aligned with the help of classical registration methods.

The figure below depicts our pipeline:

Key findings of the paper

  • 📉 It is possible to use contrastive learning and integrate equivariance constraints during training.
  • 🖼 CoMIRs can be aligned succesfully using classical registration methods.
  • 🌀 The CoMIRs are rotation equivariant (youtube animation).
  • 🤖 Using GANs to generate cross-modality images, and aligning those did not work.
  • 🌱 If the weights of the CNN are initialized with a fixed seed, the trained CNN will generate very similar CoMIRs every time (correlation between 70-96%, depending on other factors).
  • 🦾 Our method performed better than Mutual Information-based registration, the previous state of the art, GANs and we often performed better than human annotators.
  • 👭 Our method requires aligned pairs of images during training, if this condition cannot be satisfied, non-learning methods (such as Mutual Information) must be used.

Datasets

We used two datasets:

Animated figures

The video below demonstrates how we achieve rotation equivariance by displaying CoMIRs originating from two neural networks. One was trained with the C4 (rotation) equivariance constrained disabled, the other one had it enabled. When enabled, the correlation between a rotated CoMIR and the non-rotated one is close to 100% for any angle.

Reproduction of the results

All the results related to the Zurich satellite images dataset can be reproduced with the train-zurich.ipynb notebook. For reproducing the results linked to the biomedical dataset follow the instructions below:

Important: for each script make sure you update the paths to load the correct datasets and export the results in your favorite directory.

Part 1. Training and testing the models

Run the notebook named train-biodata.ipynb. This repository contains a Release which contains all our trained models. If you want to skip training, you can fetch the models named model_biodata_mse.pt or model_biodata_cosine.pt and generate the CoMIRs for the test set (last cell in the notebook).

Part 2. Registration of the CoMIRs

Registration based on SIFT:

  1. Compute the SIFT registration between CoMIRs (using Fiji v1.52p):
fiji --ij2 --run scripts/compute_sift.py 'pathA="/path/*_A.tif”,pathB="/path/*_B.tif”,result=“SIFTResults.csv"'
  1. load the .csv file obtained by SIFT registration to Matlab
  2. run evaluateSIFT.m

Other results

Computing the registration with Mutual Information (using Matlab 2019b, use >2012a):

  1. run RegMI.m
  2. run Evaluation_RegMI.m

Scripts

The script folder contains scripts useful for running the experiments, but also notebooks for generating some of the figures appearing in the paper.

Citation

NeurIPS 2020

@inproceedings{pielawski2020comir,
 author = {Pielawski, Nicolas and Wetzer, Elisabeth and \"{O}fverstedt, Johan and Lu, Jiahao and W\"{a}hlby, Carolina and Lindblad, Joakim and Sladoje, Nata{\v{s}}a},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
 pages = {18433--18444},
 publisher = {Curran Associates, Inc.},
 title = {{CoMIR}: Contrastive Multimodal Image Representation for Registration},
 url = {https://proceedings.neurips.cc/paper/2020/file/d6428eecbe0f7dff83fc607c5044b2b9-Paper.pdf},
 volume = {33},
 year = {2020}
}

Acknowledgements

We would like to thank Prof. Kevin Eliceiri (Laboratory for Optical and Computational Instrumentation (LOCI) at the University of Wisconsin-Madison) and his team for their support and for kindly providing the dataset of brightfield and second harmonic generation imaging of breast tissue microarray cores.

Comments
  • compute_pairwise_loss() in the code

    compute_pairwise_loss() in the code

    Hello, and thank you so much for your work! The CoMIR does enlighten me a lot. I appreciate your time so I'm trying to make my question short.

    I just have a question about the compute_pairwise_loss() function in train-biodata.ipynb. I noticed that you are using softmaxes[i] = -pos + torch.logsumexp(neg, dim=0) to compute the loss. If my understanding is correct, this corresponds to calculate

    But the InfoNCE loss mentioned in your paper is which contains the similarity of the positive pair in the denominator.

    Although there is only some slight difference between the two formulas, I'm not sure if it will lead to change of training performance. So, could you please clarify whether you are using the first formula, and why?

    opened by wxdrizzle 3
  • Questions about the training datasets

    Questions about the training datasets

    Hello! Thanks for your great contributions! However, it seems that there is only evaluation datasets. E.g. how can we get the trainning datasets of Zurich?

    opened by lajipeng 2
  • Missing Scripts

    Missing Scripts

    Hello,

    very awesome work! I was trying to reproduce your results and found that the scripts referred in " run RegMI.m run Evaluation_RegMI.m " are missing. Do you know where I could find these two programs?

    Thank you!

    opened by turnersr 2
  • backbone

    backbone

    Hi, Pielawski! The CoMIR uses dense Unets tiramisu as the backbone. However, its encoder/decoder structure is very cumbersome. Can other lightweight structures be used as the backbone for CoMIR? Thanks!

    opened by paperID2381 1
  • Bump numpy from 1.18.2 to 1.22.0

    Bump numpy from 1.18.2 to 1.22.0

    Bumps numpy from 1.18.2 to 1.22.0.

    Release notes

    Sourced from numpy's releases.

    v1.22.0

    NumPy 1.22.0 Release Notes

    NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

    • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
    • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
    • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
    • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
    • A new configurable allocator for use by downstream projects.

    These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

    The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

    Expired deprecations

    Deprecated numeric style dtype strings have been removed

    Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

    (gh-19539)

    Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

    numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

    (gh-19615)

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Missing Script

    Missing Script

    Hello, Very awesome work! I was trying to reproduce your results and found that the scripts referred in " run evaluateSIFT.m " are missing. Do you know where I could find this program?

    Your help would be greatly appreciated! I look forward to your reply, thank you!

    opened by chengtianxiu 1
Releases(1.0)
Owner
Methods for Image Data Analysis - MIDA
Methods for Image Data Analysis - MIDA
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks

Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural

31 Dec 06, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
Cross View SLAM

Cross View SLAM This is the associated code and dataset repository for our paper I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Loca

Ian D. Miller 99 Dec 09, 2022
TensorFlow implementation of the algorithm in the paper "Decoupled Low-light Image Enhancement"

Decoupled Low-light Image Enhancement Shijie Hao1,2*, Xu Han1,2, Yanrong Guo1,2 & Meng Wang1,2 1Key Laboratory of Knowledge Engineering with Big Data

17 Apr 25, 2022
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022